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Abstract

This thesis takes a new approach to a very well known problem of stopping
theory: We will take a look at a new kind of secretary problem, which is based
on rocket launches.

In the first chapter, we will remind ourselves of the classic secretary problem
and build a bridge towards rocket launches with a simple one-player-model.
Next, the focus will be on a one-player model where multiple successful launches
are required for a mission (Section 3: The n-k-t-model) and examine optimal
strategies and their expected return while running into numerical problems.

Then, we move on to a two-player-model in which the players have a different
number of rockets (Section 4: Rich vs. Poor) and study the effects of three
distinct rule variations. In the fifth section, we explore models inspired by the
space travel organization SpaceX, a multi-player model in which players work
together as a team, and a two-player-model inspired by the scoring in Judo.
In the sixth and final section of this thesis, we will vary the turn order of the
two players to examine possible effects on the outcome of games, notably by
randomizing the order and examining the model with snake order.
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1 Introduction

For as long as work and jobs have existed, companies and employers have been
dealing with the question of

”
Who is the best person for this job?“. Nowadays,

most large companies have specific departments just to find the best people for their
purposes (often called Human Resource or Recruiting departments). Mathemati-
cally, this is what we call a selection problem - picking one or a subset of candidates
out of a larger group, trying to find the optimal result. A simple problem that is
based on this type of question is the Secretary problem, which will be presented in
its most classic version in the following section.

But for this thesis, we will quickly move on from picking secretaries and go to space
- at least theoretically. Based on the CSP, we will first define a one-player model
dealing with rocket launches, which has many similarities to the secretary problem.
Then, we will vary this model further to open up a whole new field of selection
problems. We are going to examine one-player models, like the one inspired by the
innovations of SpaceX in Section 5.1 and two-player models, most notably a model
with players having a different number of rockets, dramatically named

”
Rich vs.

Poor “ which can be found in Section 4.

The number of rocket launches needed will also vary, in most cases a single suc-
cessful launch will suffice, but we also discuss a model in which multiple starts are
required, like the n − k − t-model in Section 3. The possibilities for models of this
type are endless - much like space itself. So, let’s start by taking a look at the
Classic Secretary Problem and then go for some rocket launches.

Note: In the thesis, we will often use
”
he“ when referring to the player(s). Despite

this, all players can be seen as gender-neutral.
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2 The Secretary Problem And A Simple Rocket Variant

The secretary problem is one of the most well-known problems in the field of optimal
stopping theory. The classic version of this problem is laid out below:

Classic secretary problem

• A recruiter is searching for a new secretary, and has n candidates to fill the
vacancy. The recruiter knows n and is able to rank candidates from 1st to
nth.

• He calls up the candidates one-by-one, and has to decide whether to pick the
current candidate or send him home.

• Once a candidate is sent home, he can no longer be called back to the office.

• Once a candidate is picked, all remaining candidates are sent home.

• The candidates’ skill levels are independent and uniformly distributed.

• The recruiter wants to maximize the chance of picking the best candidate.

The optimal solution for this problem is defined by a stopping rule: The recruiter
lets a certain number r of the n candidates pass to get information - after that he
picks the first candidate who is better than those r candidates - or the last one, if
none of the n − r candidates is better. The search for the optimal cutoff r is done
by calculating the probability of picking the correct candidate while letting the first
r − 1 candidates pass:

P (r) =
n∑

i=1
P (Candidate i selected ∩ Candidate i is best )

=
n∑

i=1
P (Candidate i selected

∣∣ Candidate i is best ) · P (Candidate i is best)

= [
n∑

i=r
P (best of the first i− 1 cand. is in the first r − 1

∣∣ Cand. i is best)] · 1

n

=
n∑

i=r

r − 1

i− 1
· 1

n
=

r − 1

n

n∑
i=r

1

i− 1

This sum isn’t defined for r = 1, but it is clear to see that P (1) = 1
n , i.e. picking the

first candidate yields a 1-in-n chance of picking the best, given uniform distribution.

The sum can be approximated by setting x as the limit of
r

n
, t =

i

n
and dt =

1

n
.

P (x) = x ·
1∫

x

1

t
dt = −x · ln(x)

Setting the derivative of P(x) to 0 and solving for x, we gather the optimal cutoff

parameter x =
1

e
. Therefore, the recruiter should let approximately

n

e
(around 37

percent) of candidates pass before picking the first candidate better than those. The
probability of finding the best candidate by using this

”
37 percent rule “ also tends

towards
1

e
for large n.

8



Overcoming the gap between choosing secretaries and launching rockets, we now take
a look at a very simple decision problem: An organization is trying to launch a rocket
successfully. For this they have a time window of t ∈ N days (the organization knows
t), with one launch opportunity for each day. They only have one rocket though,
and a failed launch would equal the destruction of said rocket and a mission failure.
For each day, the probability of a successful launch is given by a variable xt ∈ (0, 1),
and we define xi as the probability on the i-last day (e.g. x1 is the value on the last
day of the time window). Comparing this to the CSP, we find several similarities:

• The organization has to make a decision on a day-by-day basis, just like the
recruiter has to make a decision for each candidate coming to his office.

• Skipping a day will be the equivalent of sending home a candidate - both can’t
be brought back.

• Attempting the launch will be the equivalent of picking a candidate - further
days / candidates cannot be considered.

• The deciders want to maximize their chances of making the best possible de-
cision (successful launch / best candidate)

For this model, we define xt as a independent, uniform random number (xt ∼
U(0, 1)). We will evaluate the success chances of the organization with Et (expected
success rate with t remaining days). For t = 1, we get

E1 = E(x1) =
1

2

This is simple: On the last day, there has to be a launch attempt. Therefore, the
organization will attempt a launch with any x1, which has the expected value of
0.5.

E2 = P (x2 < E1) · E1 + P (x2 ≥ E1) · E(x2|x2 ≥ E1) =
1

2
· 1

2
+

1

2
· 3

4
=

5

8

Here, the decider sees x2. If it is higher than the expected return for waiting for
t = 1, he will attempt a launch - getting the conditional expectation E(x2|x2 > E1)
as a return, otherwise he waits for the final day. For any t ≥ 2, the recursion formula
is the same:

Et = P (xt − 1 < Et−1) · Et−1 + P (xt ≥ Et−1) · E(xt|xt ≥ Et−1)

= Et−1 · Et−1 + (1− Et−1) ·
1 + Et−1

2

=
1 + E2

t−1

2

This is a very simple recursion formula, and it’s fairly obvious that Et → 1 for large

t, as
1 + x2

2
is monotonically increasing for x ≥ 0, and E(xt) has a maximum value

of 1.

This is the model that is most similar to the classic secretary problem, the models
in the next sections are all a bit more complex and sometimes less comparable to
the CSP.
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3 The n-k-t Rocket Model

3.1 Problem and Modeling

The first proper model examined in this thesis is that of a single player launching
multiple rockets: A space travel organization is planning a mission which involves a
total of k successful rocket launches. Knowing that some attempts might fail, they
have a certain number of rockets n ≥ k. The time window for the mission consists
of t days (usually t ≥ n), with a maximum of one launch attempt per day. n, k, t
are all natural numbers and for later calculations, we only consider n, k, t ≥ 1.

Definition 3.1. (Launch Success Probability)
In the model, the probability for a successful launch on a certain day is given by a ran-
dom number xi ∈ (0, 1). Therefore, the probability of a failed launch attempt,which
equals the loss of the rocket, is given by 1− xi. For clarity, we define that xi refers
to the success probability on the ith-to-last day, e.g. x1 being the probability of a
successful launch on the final day.

The organization is aware of the current value of xi and will decide whether to
attempt a launch or wait for a better day. Now we take a look at the distribution
of the xi: In the simplest version of the model, we will set them as independent,

uniformly distributed numbers, i.e. xi
iid∼ U(0, 1).

Definition 3.2. (Mission Success/Failure)
The mission is a success if the organization manages to successfully launch the
required number of rockets before time runs out. The organization will receive 1
point for a successful mission.

The mission is a failure if time runs out or the rocket supply is destroyed before
the required number of successful launches, e.g. n = 0 or t = 0 while k > 0. The
organization will get no points in this case.

To have a succinct notation for the upcoming recursion formulas, we also define the
following two values:

Definition 3.3. (Expected Mission Success, Decision Parameter)
E(n, k, t) describes the expected mission success probability given n rockets, k

successful launches needed and t remaining days. E(n, k, t) ∈ (0, 1). It can also be
seen as the expected points the organization will receive.

S(n, k, t) ∈ [0, 1] is the decision parameter the player makes his launching deci-
sion. If xt is larger than this value, he will launch a rocket. For smaller xt, he will
choose to not attempt a launch and wait for the next day.

As we have now defined all relevant notations and rules for this model, we will
now examine the recursion for the organizations optimal strategy, and evaluate the
results.

10



3.2 Recursion for Independent Uniform xi

We examine the recursion and mission success probability in case the organization
makes optimal decisions. We want to calculate the mission success probability for
any given numbers n, k, t ∈ N, particularly for t ≥ n ≥ k. Some values are fairly
obvious: For n < k and t < k, the value E(n, k, t) is 0 because there are not enough
rockets or not enough time respectively. Also, we can easily see that

E(n, k, t) = (
1

2
)t, for k = t.

Here, the organization is launching a rocket every day regardless of xi, because time
is running out. They would need k = t successful launches in a row for an overall
mission success. Another situation that can be easily calculated is (1, 1, 2):

E(1, 1, 2) = P [x2 ≤ E(1, 1, 1)] · E(1, 1, 1) + P [x2 > E(1, 1, 1)] · E(x2|x2 >
1

2
)

=
1

2
· 1

2
+

1

2
· 3

4
=

5

8

Here, the organization either attempts a launch on the penultimate day, if x2 >
1

2
,

or on the final day with an expected success rate of
1

2
. In general, the organization

will attempt a launch rocket if the expected points for making the attempt are
higher than for not making a launch attempt/skipping the day.

For programming the recursion, we will have to look at four different cases before
we formulate the general recursion:

Case 1: k = t = 1
In this case, we are left with the final day and need to have a successful launch. The

probability is equal to the expected value of a random x1 ∼ U(0, 1),
1

2
.

Therefore we get E(n, 1, 1) =
1

2
for all n ≥ 1.

Case 2: k = n = 1
In this case, we have one rocket and need one successful launch. By Case 1, we

know that E(1, 1, 1) =
1

2
, and given E(1, 1, t− 1), we can calculate

E(1, 1, t) = P [xt ≤ E(1, 1, t− 1)] · E(1, 1, t− 1) + P [xt > E(1, 1, t− 1)] ·
1 + E(1, 1, t− 1)

2

= E(1, 1, t− 1) · E(1, 1, t− 1) + [1− E(1, 1, t− 1)] ·
1 + E(1, 1, t− 1)

2

=
1

2
+

1

2
· E(1, 1, t− 1)2.

This case is equal to the single-player model we briefly discussed in Section 2.

Case 3: n ≥ t
While we are mostly interested in n ≤ t, this case is also relevant to the general
recursion (and programming). In this case, we have at least as many rockets as
days. Because there is no added value in having rockets left over, the decider will
simply attempt a launch every day, regardless of the value xi:

11



E(n, k, t) =


1− (

1

2
)t k = 1

1

2
· (E(n− 1, k − 1, t− 1) + E(n− 1, k, t− 1)) k > 1

Case 4: n > k = 1, n < t

E(n, 1, t) = P [xt ≤ E(n, 1, t− 1)] · E(n, 1, t− 1)

+P [xt > E(n, 1, t−1)]·[
1 + E(n, 1, t− 1)

2
·1+[1−

1 + E(n, 1, t− 1)

2
]·E(n−1, 1, t−1)]

= E(n, 1, t−1)2 + [1−E(n, 1, t−1)] · [
1 + E(n, 1, t− 1)

2
·1 + [1−

1 + E(n, 1, t− 1)

2
] ·

E(n− 1, 1, t− 1)]

After preparing with these cases, we can now focus on the general recursion for
n, k, t > 1, k ≤ n (enough rockets), k ≤ t (enough days) and n < t. First off, we
take a look at the decider’s two options:

• The current xt is too small, and he chooses to not attempt a launch today.
Therefore, the value of E(n, k, t − 1) is achieved. To keep the formula short,
we will rename this value w (

”
wait“).

• Upon seeing xt, the decider chooses to make a launch attempt. With a proba-
bility xt this attempt is successful and E(n−1, k−1, t−1) is achieved (renamed
s,

”
successful launch“), with a probability of 1−xt the attempt fails, the rocket

is lost, and E(n− 1, k, t− 1) is achieved (renamed f ,
”
failed launch“).

Thus, the decider chooses the maximum of the known success rate of waiting w, and
the expected success rate in case of a launch attempt. The latter is also equal to
the previously defined decision parameter and can be calculated as

S(n, k, t) = xt ·E(n−1, k−1, t−1) + (1−xt) ·E(n, k−1, t−1) = xt · s+ (1−xt) · f.

S(n, k, t) is strictly increasing in xt because of s > f . For E(n, k, t), we therefore
receive the following general recursion formula:

E(n, k, t) = P [S(n, k, t) < w] · w + [P (S(n, k, t) ≥ w] · S(n, k, t)

We now look for the optimal value x∗, for which waiting and attempting a launch
yield the same (expected) success probability. For all xt > x∗, a launch attempt is
better than waiting.

w = x∗ · s + (1− x∗) · f ⇔ x∗ =
w − f

s− f
= P (S(n, k, t) < w), resulting in

E(n, k, t) =
w − f

s− f
· w + (1−

w − f

s− f
)(

1 + w−f
s−f

2
· s +

1− w−f
s−f

2
· f)

=
−w2 + 2wf − s2

2(f − s)

with w = E(n, k, t− 1), s = E(n− 1, k − 1, t− 1), f = E(n− 1, k, t− 1).
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3.3 Numerical Instability and Results

The recursion was first programmed in Scilab, the three parameters of RocketNKT
(nmax,kmax,tmax) indicating the maximum n, k, t to which E is calculated. Now,
testing it for nmax = kmax = tmax quickly showed a problem. For tmax = 37, the
calculation still worked without prompting an error, but in t = 38, there was the
first division by 0. The first (n, k, t) in which this happened was (36,3,38), which is
part of the general recursion. To understand what happened, let’s look at how it is
calculated:

E(36, 3, 38) =
−E(36, 3, 37)2 + 2 · E(36, 3, 37) · E(35, 3, 37)− E(35, 2, 37)2

2 · [E(35, 3, 37)− E(35, 2, 37)]

Division by zero occurs due to both E(35, 3, 37) and E(35, 2, 37) equaling 1 in
Scilab’s double-precision calculation. The difference is thus zero, and the program
ends with an error.

We can still calculate accurate values for larger t, if we limit nmax and kmax to
smaller values. Assuming nmax = kmax, here’s how far the program runs without
errors:

Table 3.3.1: Maximum t with successful calculation, n-k-t model

nmax/kmax 5 10/15/20 25 30 32

tmax 40485 32908 345 47 32

(n, k, t) with 1st error (5,2,40486) (6,2,32907) (25,2,346) (29,3,48) (32,2,33)

First error E > 1 E > 1 E > 1 E > 1 E > 1

We see that the
”
division by 0“ error is not really the first one to occur during

calculation - before this, there are already values greater than 1, which is of course
not possible by definition of the model. This is most likely due to rounding inac-
curacies during the division while calculating the general recursion, which can be
seen in Table 3.3.1 as well (the first values that excess 1 are all ones calculated
in the general formula). The division by 0 error is probably connected to these
inaccuracies as well. If we add another if-clause to alter values greater than 1 to be
exactly 1, we will run into division by zero quite quickly as well.

Another implementation
Scilab uses the data type double for its calculations, which is precise enough for
many applications. In our case, it can only be considered satisfying if we aren’t too
interested in large combinations of n, k, t. Therefore, a second implementation of
the recursions was done in Java, which has a data type named BigDecimal, that
basically allows infinite precision (for division, there are multiple rounding mode
options.) Sadly, this is traded for a vast increase in calculation time, which makes
it hardly useful as well - and it’s still unclear what rounding mode will not get
problematic for large n, k, t.
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E > 0.9
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E < 0.1

Figure 3.3.1: Visual representation of E(n, k, 30)

Some results:
In Figure 3.3.1 one can see a visualization of the results for t = 30. We see that in
many of the (n, k) the expected success rate is either larger than 90 or less than 10
percent, with only about a third of the k’s delivering an expected success rate in
(0.1, 0.9) per each n. It seems that for n = t, the following pattern can be deducted:

E(n, k, t) > 0.9 for k ≤ n

3
, E(n, k, t) < 0.1 for k ≥ 2n

3

This works for n = 3 · i, i = 2, ..., 10. It is unclear whether this continues for larger
n as well, as the rounding inaccuracies begin to pop up at n = k = t = 33.
Another interesting case to examine is the one of n = k, i.e. a scenario in which all
remaining rockets have to be launched successfully. Now, for t = k, we know that

E(n, k, t) simply becomes (
1

2
)t, equal to the probability of guessing the results of t

fair coin-flips correctly. But what happens if the player has more time on his hands?
This was calculated for E(5, 5, t), E(10, 10, t), E(15, 15, t) and E(20, 20, t), where we
looked for the t in which certain barriers were passed. Each cell denotes the t in
which E(n, k, t) is larger then a barrier b. We chose b = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99
for this. The results are below in Table 3.3.2:
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Table 3.3.2: Barriers in nkt-model, n = k

b
(n,k)

(5,5) (10,10) (15,15) (20,20)

≥ 0.5 28 97 205 350

≥ 0.6 39 133 279 476

≥ 0.7 57 193 402 684

≥ 0.8 93 311 646 1,097

≥ 0.9 201 664 1,375 2,330

≥ 0.95 417 1,369 2,831 4,794

≥ 0.99 2,152 7,017 14,478 24,500

If, for example, the player has to launch all his 20 rockets to succeed, and wants
to ensure he has an 80% chance of doing so, he needs at least 1,097 days - which
pretty much equals three years. To have a 90% success chance, this rises to over six
years already. On the other hand, a player who has to launch all five of his rockets
successfully already has a larger than 50% chance if he only has four weeks to do
so. For comparison, let’s look at the barriers when the player has n = 5, 10, 15, 20
rockets, but only has to start k = 4, 9, 14, 19 of them:

Table 3.3.3: Barriers in nkt-model, n = k + 1

b
(n,k)

(5,4) (10,9) (15,14) (20,19)

≥ 0.5 10 39 83 143

≥ 0.6 13 48 102 175

≥ 0.7 17 61 129 221

≥ 0.8 24 83 175 298

≥ 0.9 40 134 278 469

≥ 0.95 67 210 426 715

≥ 0.99 217 572 1,104 1,807

We see that for our previous example, the player with 20 rockets who now only needs
to launch 19 successfully, will only need around ten moths to have an 80% success
rate. The barriers for having a > 99% chance have been cut down by a factor larger
than 10 as well. Having one

”
free“ failed start therefore helps the player dramatically

if he wants to ensure a high success rate. Finally, lets look at the case when the
player only needs to launch half his rockets, where the effect is even stronger:

Table 3.3.4: Barriers in nkt-model, n = 2k

b
(n,k)

(4,2) (10,5) (16,8) (20,10)

≥ 0.5 3 9 15 19

≥ 0.6 4 10 17 21

≥ 0.7 5 11 18 22

≥ 0.8 6 13 20 24

≥ 0.9 12 18 24 28

≥ 0.95 22 24 29 33

≥ 0.99 104 82 46 46
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4 A Two-Player Model: Rich vs. Poor

In this section, we will explore a model in which two players are competing against
each other. The rules of the game are as follows:

• Each player has a certain amount of rockets available. Player 1 has got n1

rockets, while Player 2 has n2 rockets. If n1 > n2, we will refer to Player 1
as the

”
rich“ player (or short

”
Rich“) and to Player 2 as the

”
poor“ player

(short:
”
Poor“)

• The players take alternating turns as time counts down from a fixed T ∈ N.
Every day, one of the players has the opportunity for a launch attempt. If the
launch attempt fails, the rocket is lost.

• The probability for a successful launch on the t-last day will be xt ∼ U(0, 1),
independent for all t.

• The winner of the game receives 1 point, the loser no points. Both players
want to maximize their expected points.

There are three possible ways of the game ending in the base model:

1. One of the players launches a rocket successfully. He wins the game (1 point),
the opponent loses (0 points).

2. One player wastes all his rockets without a single successful launch. He loses
the game (0 points), the opponent wins 1 point.

3. Time runs out on the players, i.e. t reaches 0. To give them incentive to make
launch attempts, we declare them both losers in this scenario. By this, players
should always launch rockets when time is running out. Any player who is in
t = 1 in the basic scenario has to launch his rocket with any given x1.

By these constraints, it is clear that this is not a constant sum game, especially if n1

or n2 is larger then t, where it is possible that both players receive no points because
they fail to launch within time (although this will almost surely not happen for

large T). If both n1 and n2 are smaller than b t
2
c, both players should be forced to

use up their rocket supply in time, as there is no additional reward for saving rockets.

Possible rule variants:

• Lucky loser: When one player launches a rocket successfully in t > 1, the
other player has one more chance of launching the rocket on the following day,
to get a certain fraction of the point p ∈ (0, 1) (if he is successful, the player
with the first launch will receive 1 − p points instead of 1). It seems sensible

to suggest that p ≤ 1

2
.

• No launch, no win: When one player wastes his rockets, the other player
has all remaining days to try a successful launch. If he doesn’t get a successful
start either, both lose as stated in the third ending.

• Consolation points: If time runs out, both players get a fixed c ∈ (0, 1)

points. c <
1

2
should be a reasonable assumption.
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With these three variants to the base model, and given they can be combined with
each other, we will have a total of (at least) eight different scenarios to examine in
this section. Mostly of interest is the expected points for both players if t is large
and both players play optimally. We will also look for possible anomalies or strange
situations the players might face under certain rule sets, and evaluate the advantage
Rich has over Poor.

By using recursion, we will calculate the expected points in any scenario, defining
the following:

Definition 4.1. (Expected points in the Rich vs. Poor model)
The value Ed(n1, n2, t) gives the expected points in every situation. The d stands
for the player currently having the launch opportunity, thus d ∈ {1, 2}. n1 and n2

are the amount of rockets both players have left, and t represents the number of
remaining days.

Similar to the decision parameter in Section 3, we also define:

Definition 4.2. (Decision parameter in the Rich vs. Poor model)
The parameter sd(n1, n2, t) is the decision parameter for player d, when the play-
ers have n1, n2 rockets and t days left. Optimal players will make a launch attempt
for any xt larger than this value, and skip the day else.

In each of the eight scenarios, we will go through all necessary cases to determine
the recursion formula. We will find that in some scenarios, we can use the same
formulas as calculated in previous scenarios. To illustrate the decision-making of
the players, there will also be a selection of decision trees in each section.

Note: Each of the eight scenarios was programmed in Scilab separately, though most
of the RichVsPoorX programs are redundant. For running all eight scenarios laid
out in this thesis, only RichVsPoor6 and RichVsPoor8 are really necessary. With
RichVsPoor6 one can also analyze Scenario 1 (p = 0, c = 0), Scenario 2 (c = 0)
and Scenario 4 (p = 0). With RichVsPoor8 it is possible to analyze Scenario 3
(p = 0, c = 0), Scenario 5 (c = 0) and Scenario 7 (p = 0), too. With a bit
more programming effort, there is obviously the possibility of having a

”
one-for-all“

program to run all eight scenarios.
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4.1 Scenario 1: Standard Rule Set

In this scenario, we will use the rules laid out in the beginning of the chapter, with-
out any variations. Whoever launches the first rocket successfully will gain the full
point, and if neither of the players get into orbit, there will also be no consolation
points. To determine the recursion, let’s look at t = 1 first:

E1(n1, n2, 1) = E2(n1, n2, 1) =
1

2
for all n1, n2 ≥ 1

With only one day left, both players are forced to make a final launch attempt
(otherwise they are guaranteed to get 0 points). Therefore, they’re expected points
is equal to the expected value of x1, which is uniformly distributed on (0, 1), giving
them half a point each on average. For t = 2, we will look at the decision tree for
Rich:

E1(n1, n2, 2)

n2 = 1: 0.5
n2 > 1: 0

No launch

n1 = 1 or n2 > 1: 0
n1 > 1 and n2 = 1: 0.5

Failure

1
Succe

ss

Launc
h

Figure 4.1.1: Decision tree, Scenario 1, t = 2

In case Rich attempts a launch in t = 2, he will receive 1 point if the launch is
successful. If the attempt fails, he will receive 0 points in case he destroyed his last
rocket or Poor not being at risk of destroying.his last rocket. If Poor only has one
rocket left, Rich still has a 50% chance of getting the point when Poor makes his
final attempt in t = 1. If Rich doesn’t launch a rocket, he can only get points if Poor
only has one rocket left as well. If Poor has more than one rocket remaining and
thus can’t destroy his rockets before time runs out, Rich has to attempt a launch
given any x2, therefore

E1(n1, n2, 2) =
1

2
for all n2 > 1, and E2(n1, n2, 2) =

1

2
for all n1 > 1

Should Poor have only one rocket left, Rich has two winning options: Making his
own successful launch in t = 2, or waiting for Poor’s forced(!) launch attempt with
his final rocket in t = 1, which fails half the time. If Rich has only one rocket left, he

will make a launch attempt if x2 is greater than
1

2
, i.e. the expected points if he does

not launch a rocket and lets Poor make a forced attempt on the last day. Thus, we get

E1(1, 1, 2) = P [x2 < 1− E2(1, 1, 1)] · [1− E2(1, 1, 1)]

+ P [x2 ≥ 1− E2(1, 1, 1)] · E[x2
∣∣x2 ≥ 1− E2(n1, 1, 1)] =

1

2
· 1

2
+

1

2
· 3

4
=

5

8

and the analogous result E2(1, 1, 2) =
5

8
for Poor. If Rich has at least two rockets,

he will simply launch with any x2 because a failed launch will not lose him the game
(yet). He therefore receives
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E1(n1, 1, 2) =
1 + 0.5

2
=

3

4
for n1 > 1, E2(1, n2, 2) =

3

4
for n2 > 1.

Next, we take a look at situations in which one of the players has only one rocket
remaining, with the other player having at least two rockets left - this and all of the
following cases are examined for t > 2.

In the first two cases, a failed launch attempt by the active player leads to an instant
loss. The decision tree for both Rich and Poor in this case can be found in Figure
4.1.2 just below. The values s1, s2 on which basis the player decides if he attempts
to launch a rocket is equal to the expected value of

”
no launch“. A higher xi will

lead to an attempt, otherwise the player will skip the day:

s1 = s1(1, n2, t) = 1− E2(1, n2, t− 1) and s2 = s2(n1, 1, t) = 1− E1(n1, 1, t− 1)

For the expected points, we receive

E1(1, n2, t) = s21 + (1− s1) · (
1 + s1

2
) and E2(n1, 1, t) = s22 + (1− s2) · (

1 + s2

2
)

where
1 + si

2
is the conditional expectation of xt, E(xt|xt ≥ si).

1) E1(1, n2, t)
2) E2(n1, 1, t)

1) 1− E2(1, n2, t− 1)
2) 1− E1(n1, 1, t− 1)

No launch

0
Failure

1
Succes

s

Launc
h

Figure 4.1.2: Decision tree, Scenario 1, active player with single rocket

In the other two situations, a failed launch still gives the active player a chance for
an overall win (see Fig. 4.1.3). For the decision parameter, we demand:
1− E2(n1, 1, t− 1) = s3 · 1 + (1− s3) · (1− E2(n1 − 1, 1, t− 1))

⇔ s3 =
E2(n1 − 1, 1, t− 1)− E2(n1, 1, t− 1)

E2(n1 − 1, 1, t− 1)
for 1) and

1− E1(1, n2, t− 1) = s4 · 1 + (1− s4) · (1− E1(1, n2 − 1, t− 1))

⇔ s4 =
E1(1, n2 − 1, t− 1)− E1(1, n2, t− 1)

E1(1, n2 − 1, t− 1)
The expected points for Rich and Poor can then be calculated as:

E1(n1, 1, t) = s3 · (1− E2(n1, 1, t− 1))

+ (1− s3) ·
[1 + s3

2
· 1 +

(
1−

1 + s3

2

)
· (1− E2(n1 − 1, 1, t− 1)

]
E2(1, n2, t) = s4 · (1− E1(1, n2, t− 1))

+ (1− s4) ·
[1 + s4

2
· 1 +

(
1−

1 + s4

2

)
· (1− E1(1, n2 − 1, t− 1)

]
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3) E1(n1, 1, t)
4) E2(1, n2, t)

3) 1− E2(n1, 1, t− 1)
4) 1− E1(1, n2, t− 1)

No launch

3) 1− E2(n1 − 1, 1, t− 1)
4) 1− E1(1, n2 − 1, t− 1)

Failure

1
Succes

s

Launc
h

Figure 4.1.3: Decision tree, Scenario 1, passive player with single rocket

Finally, we can also look at the general recursion for all other scenarios, i.e.
n1, n2 > 1, t > 2, the decision tree can be found below. For the decision pa-
rameters, we demand:

1− E2(n1, n2, t− 1) = s5 · 1 + (1− s5) · (1− E2(n1 − 1, n2, t− 1))

⇔ s5 = 1−
E2(n1, n2, t− 1)

E2(n1 − 1, n2, t− 1)

1− E1(1, n2, t− 1) = s6 · 1 + (1− s6) · (1− E1(n1, n2 − 1, t− 1))

⇔ s6 = 1−
E1(n1, n2, t− 1)

E1(n1, n2 − 1, t− 1)

and the expected points are therefore

E1(n1, n2, t) = s5 · (1− E2(n1, n2, t− 1))

+ (1− s5) ·
[1 + s5

2
+
(
1−

1 + s5

2

)
· (1− E2(n1 − 1, n2, t− 1)

]
E2(n1, n2, t) = s6 · (1− E1(n1, n2, t− 1))

+ (1− s6) ·
[1 + s6

2
+
(
1−

1 + s6

2

)
· (1− E1(n1, n2 − 1, t− 1)

]

5) E1(n1, n2, t)
6) E2(n1, n2, t)

5) 1− E2(n1, n2, t− 1)
6) 1− E1(n1, n2, t− 1)

No launch

5) 1− E2(n1 − 1, n2, t− 1)
6) 1− E1(n1, n2 − 1, t− 1)

Failure

1
Succes

s

Launc
h

Figure 4.1.4: Decision tree, Scenario 1, both players with more than one rocket

We can now summarize all the formulas in one theorem:

Theorem 4.3. (Recursions in the Rich vs. Poor model, Scenario 1)

The following recursions describe the two-player-model with standard rule set:

E1(n1, n2, 1) = E2(n1, n2, 1) =
1

2
, n1, n2 ≥ 1
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E1(1, 1, 2) = E2(1, 1, 2) =
5

8

E1(n1, 1, 2) = E2(1, n2, 2) =
3

4
for n1, n2 > 1

E1(n1, k, 2) = E2(k, n2, 2) =
1

2
for n1, n2 ≥ 1, k > 1

E1(1, n2, t) = s21 + (1− s1) · (
1 + s1

2
) for n2 ≥ 1, t > 2

E2(n1, 1, t) = s22 + (1− s2) · (
1 + s2

2
) for n1 ≥ 1, t > 2

E1(n1, 1, t) = s3 · (1− E2(n1, 1, t− 1))

+ (1− s3) ·
[1 + s3

2
+
(
1−

1 + s3

2

)
· (1− E2(n1 − 1, 1, t− 1)

]
, n1 ≥ 2, t > 2

E2(1, n2, t) = s4 · (1− E1(1, n2, t− 1))

+ (1− s4) ·
[1 + s4

2
+
(
1−

1 + s4

2

)
· (1− E1(1, n2 − 1, t− 1)

]
, n2 ≥ 2, t > 2

E1(n1, n2, t) = s5 · (1− E2(n1, n2, t− 1))

+ (1− s5) ·
[1 + s5

2
+
(
1−

1 + s5

2

)
· (1− E2(n1 − 1, n2, t− 1)

]
, n1, n2 ≥ 2, t > 2

E2(n1, n2, t) = s6 · (1− E1(n1, n2, t− 1))

+ (1− s6) ·
[1 + s6

2
+
(
1−

1 + s6

2

)
· (1− E1(n1, n2 − 1, t− 1)

]
, n1, n2 ≥ 2, t > 2

with

s1 = 1− E2(1, n2, t− 1) s2 = 1− E1(n1, 1, t− 1)

s3 =
E2(n1 − 1, 1, t− 1)− E2(n1, 1, t− 1)

E2(n1 − 1, 1, t− 1)
s4 =

E1(1, n2 − 1, t− 1)− E1(1, n2, t− 1)

E1(1, n2 − 1, t− 1)

s5 = 1−
E2(n1, n2, t− 1)

E2(n1 − 1, n2, t− 1)
s6 = 1−

E1(n1, n2, t− 1)

E1(n1, n2 − 1, t− 1)

Now the only question remaining is the behavior of Ed(n1, n2, t) for large value of
n1, n2, t and the advantage of the rich player. We can easily find an upper bound
for the rich player’s expectation and a lower bound for the poor player with this
thought experiment: Given infinite rockets, the rich player will always launch a
rocket, regardless of the current xi. He only has to avoid the case in which he fails
his first launch attempt and the poor player launches his first rocket successfully.

Both of these events happen with probability
1

2
, therefore E1(n1, n2, t) should not

exceed 1− (
1

2
· 1
2

) =
3

4
. On the other hand, the poor player will (on his turn) always

have the possibility to just launch the rocket, regardless of xi, thus E2(n1, 1, t) should

never drop below
1

2
.

Now, these recursions can be programmed to be calculated automatically. We use
Scilab running the program RichVsPoor1, which can be found on the added CD as
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all other source codes. The program has three starting parameters n1max, n2max,
tmax, whose purpose should be fairly self-explanatory. Via testing the program, the
following results were gathered:

Theorem 4.4. (Results - Rich vs. Poor, basic rule set (Scenario 1)) i)
lim
t→∞

E1,2(1, 1, t) = 2−
√

2, expected points of waiting player are
√

2− 1

ii) lim
n1=t→∞

E1(n1, 1, t) =
√

3− 1 ≈ 0.732051 (rich player’s advantage)

iii) lim
n2=t→∞

E1(1, n2, t) = 4− 2
√

3 ≈ 0.535860 (poor player’s disadvantage)

iv) lim
t→∞

E1(n1 = n2 = t) =
2

3

As we can see, the findings ii) and iii) comply with our upper and lower bound.

Proof.
i) Assuming there is a limit to which the expected points in the 1-vs.-1-situation con-
verge, we take a closer look at E1(1, 1, t). For brevity, we rename it E1,t, E2(1, 1, t−1)
will be shortened as E2,t−1 and E1(1, 1, t− 2) becomes E1,t−2. We therefore get

E1,t = E2
2,t−1 + (1− E2,t−1) ·

1 + E2,t−1

2
, and

E2,t−1 = E2
1,t−2 + (1− E1,t−2) ·

1 + E1,t−2

2
.

Combining both equations gives

E1,t = [E2
1,t−2 + (1− E1,t−2) ·

1 + E1,t−2

2
]2

+[1− (E2
1,t−2 + (1− E1,t−2) ·

1 + E1,t−2

2
)] ·

1 + (E2
1,t−2 + (1− E1,t−2) ·

1 + E1,t−2

2
)

2

= E4
1,t−2 − 4 · E3

1,t−2 + 4 · E2
1,t−2 − 7 · E1,t−2 + 4.

Assuming convergence, E1,t should equal E1,t−2 for large t, thus

E4
1,t − 4 · E3

1,t + 4 · E2
1,t − 8 · E1,t + 4 = 0.

This equation of degree 4 has as many solutions, two of them real, two complex.
The two real solutions are 2 +

√
2, which is outside of (0, 1) and therefore cannot be

the limit, and 2−
√

2, as above in the results:

(2−
√

2)4 − 4 · (2−
√

2)3 + 4 · (2−
√

2)2 − 8 · (2−
√

2) + 4
= 68− 48

√
2− 80 + 56

√
2 + 24− 16

√
2− 16 + 8

√
2 + 4 = 0.

iii) E1(1, n2, t) = s21 + (1− s1)(
1 + s1

2
)

= (1− E2(1, n2, t− 1))2 + (1− (1− E2(1, n2, t− 1))) · (
1 + (1− E2(1, n2, t− 1))

2
)

=
1

2
E2(1, n2, t− 1)2 − E2(1, n2, t− 1) + 1.
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Now, we set E1(1, n2 − 1, t− 2) = E1,n2−1 and E1(1, n2, t− 2) = E1,n2 and receive

E2(1, n2, t− 1) = s4 · (1−E1,n2−1) + (1− s4) · [
1 + s4

2
+ (1−

1 + s4

2
) · (1−E1,n2−1)]

as outlined in Theorem 4.3, with s4 =
E1,n2−1 − E1,n2

E1,n2−1
the term equals

E2(1, n2, t− 1) =
E1,n2−1 − E1,n2

E1,n2−1
· (1− E1,n2)

+ (1−
E1,n2−1 − E1,n2

E1,n2−1
) · [

1 +
E1,n2−1−E1,n2

E1,n2−1

2
+ (1−

1 +
E1,n2−1−E1,n2

E1,n2−1

2
· (1−E1,n2−1)]

=
E2

1,n2

2 · E1,n2−1
− E1,n2 + 1

Similar to the proof for i), assuming E1(1, n2, t) converges for n2, t→∞,
E1(1, n2, t) will equal E1(1, n2, t− 2) for large enough t.

The term
E2

1,n2

2 · E1,n2−1
− E1,n2 + 1 can thus be simplified as 1−

E1(1.n2 − 1, t− 2)

2
.

Finally, we put everything together and receive

E1(1, n2, t) =
1

2
· (1−

E1(1.n2 − 1, t− 2)

2
)2 − (1−

E1(1.n2 − 1, t− 2)

2
) + 1

=
1

8
· E1(1.n2 − 1, t− 2)2 +

1

2
.

Under the assumption above, E1(1, n2, t) = E1(1, n2 − 1, t − 2) for large n2, t, and
the equation is equivalent to

1

8
· E1(1.n2, t)

2 − E1(1.n2, t) +
1

2
= 0.

This quadratic equation has two solutions, with 4− 2
√

3 as the limit for E1(1.n2, t).

ii) We already saw a example of the recursion for player Rich in the proof for iii):

E2(1, n2, t− 1) =
E1,n2−1 − E1,n2

E1,n2−1
· (1− E1,n2) + ... =

E2
1,n2

2 · E1,n2−1
− E1,n2 + 1

This can also be simplified by setting E1,n2−1 = E1,n2 , giving 1−
E1(1.n2 − 1, t− 2)

2

The analogous formula can be found for E1(n1, 1, t):

E1(n1, 1, t) = 1 −
E2(n1 − 1, 1, t− 1)

2
by assuming convergence. We already found

the limit of the numerator, therefore we conclude:

lim
n1=t→∞

E1(n1, 1, t) = lim
n2=t→∞

1−
E2(n1 − 1, 1, t− 1)

2
= 1−

4− 2
√

3

2
=
√

3− 1.

iv) We can make a case for iv) by looking at a scenario in which both players
have sufficient rockets to always attempt a launch: The player with launch rights
will either win right on the first day (probability 1

2), on the third day after the
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opponent failed the launch on day 2 (probability 1
8), on the fifth day ( 1

32) and so on:

E1(n1, n2, t) =
1

2
+

1

8
+

1

32
+

1

128
+ ...

⇒ 1

4
· E1(n1, n2, t) =

1

8
+

1

32
+

1

128
+ ...

⇒ E1(n1, n2, t)−
1

4
· E1(n1, n2, t) =

1

2

⇔ E1(n1, n2, t) =
2

3

Taking a look at the results for the decision parameter, the results are as follows

i) lim
t→∞

s1,2(1, 1, t) =
√

2− 1 ≈ 0.414214

ii) lim
n1,t→∞

s1(n1, 1, t) = 0 (→ always launch)

iii) lim
n2,t→∞

s1(1, n2, t) = 2−
√

3 ≈ 0.267949 (poor player’s decision parameter)

iv) lim
n1,n2,t→∞

s1,2(n1, n2, t) = 0 (for n1, n2 = O(t))

Proof.
(ii) and (iv) were already explained previously.
(i): Decision parameter E1(1, 1, t) = 1− E2(1, 1, t− 1) = 1− (2−

√
2) =

√
2− 1.

(iii): Theorem 4.3 and s1 = 1− E2(1, n2, t− 1) = 1− (
√

3− 1) = 2−
√

3.

Note: In this model, examining the case in which the passive player only holds one
rocket is actually superfluous, as it is included in the case

”
both players with more

than one rocket“ which means s3 = s5 and s4 = s6. This redundancy was due to
the way the recursions were programmed in Scilab, and also occurs in most other
scenarios in this section.

24



4.2 Scenario 2: Lucky Loser

For the lucky-loser-rule, we will only consider scenarios in which the losing player
still has time left to launch a rocket. This means that if the winner successfully
launches a rocket on the last day, he will get the full point for his win, and the loser
will get none. If the first successful launch happens while T ≥ 2, the lucky-loser-rule
comes into effect.

In the first scenario, we have seen that Rich has a distinct advantage over Poor, due
to being able to attempt more launches. His win-rate during his turn for large t was
approaching around 73% or

√
3−1, while Poor’s winning chance during his turn for

large t was approaching 4− 2
√

3 or around 54%. Now we will introduce a variable
p ∈ (0, 1) which the losing player can still win by successfully launching a rocket the
day after his opponent’s first launch. Questions to discuss in this scenario:

• Does the lucky-loser rule help to reduce Rich’s advantage, or does it benefit
both players equally?

• If the loser bonus helps Poor, which p ∈ (0, 1) leads to a fair game, i.e. for
which p is lim

n1,t→∞
E1(n1, 1, t) = lim

n2,t→∞
E1(1, n2, t)? This would mean that no

matter how many rockets Rich has, his expected points would be the same
during his turn.

• If there is an equilibrium as in point 2, which expected points value do both
players receive when it’s their turn?

First, we take a theoretical look at the extreme values of p, just outside (0, 1). If
p = 0, the lucky-loser rule would have no consequence, and we receive the same
results as in Scenario 1. For p = 1, and giving Rich infinite rockets, he will always

attempt a launch. But his expected points are limited to
1

2
, because Poor can still

’steal’ the full point by launching a rocket after Rich’s first launch, succeeding half
the time on average. Looking at the strategy of Poor (giving him 1 rocket and
Rich infinite rockets), his best option for large t is to wait for Rich’s first successful

launch, and then attempt a launch himself, leading to
1

2
expected points. Any other

strategy will yield ≤ 1

2
for Poor, because of the possibility of destroying his only

rocket if he goes first.

By this thought experiment, we can already deduct the assumption that a rising

p will indeed help Poor, with p = 1 making the game fair and E1,2 =
1

2
as the

equilibrium expectation in this case. It can also be assumed that p increasing towards
1 will make the game more fair, until the balance between Rich and Poor is achieved.
Furthermore, the game will likely become more of a waiting-game the higher p is, as

the reward for having a successful launch decreases considerably, especially if p >
1

2
.

We will now focus on the recursion for this scenario for p ∈ (0, 1).

For t = 1, we receive E1,2(n1, n2, 1) =
1

2
for all n1, n2 > 0, just like in Section 4.1.

For t = 2, p now comes into consideration:
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E1(n1, n2, 2)

n2 = 1: 0.5
n2 > 1: 0

No launch

n1 = 1 or n2 > 1: 0
n1 > 1 and n2 = 1: 0.5

Failure

1−
p

2
Succe

ss

Laun
ch

Figure 4.2.1: Decision tree, Scenario 2 (lucky loser), t = 2

E1,2(1, 1, 2)

= P
[
x2 · (1−

p

2
) <

1

2

]
· 1

2
+ P

[
x2 · (1−

p

2
) ≥ 1

2

]
· E
[
x2 · (1−

p

2
)|x2 · (1−

p

2
) ≥ 1

2

]
=
[1
2
· 1

1− p/2

]
· 1

2
+
[
1− 1

2
· 1

1− p/2

]
·
[1
2
·
(
1 +

1

2
· 1

1− p/2

)
· (1− p/2)

]
=
−0.25p2 + p− 1.25

p− 2
.

This term is monotonically decreasing for p ∈ (0, 1), and equals
5

8
for p = 0 and

1

2
for p = 1. Furthermore we get

E1(n1, 1, 2) = E2(1, n2, 2) =
1− p/2 + 1/2

2
=

3− p

4

and similar to Scenario 1, we also have a must-launch-case for t = 2:

E1(n1, k, 2) = E2(k, n2, 2) =
1− p/2

2
=

1

2
−

p

4
, n1, n2 ≥ 1, k > 1

Next, we take a look at the situation in which a player with one rocket has the
launch option for the day:

1) E1(1, n2, t)
2) E2(n1, 1, t)

1) 1− E2(1, n2, t− 1)
2) 1− E1(n1, 1, t− 1)

No launch

0
Failure

1−
p

2
Succe

ss

Laun
ch

Figure 4.2.2: Decision tree, Scenario 2, active player with single rocket

The parameter p will obviously also influence the decision making. For optimal
results, the decision parameter solves:

1−E2(1, n2, t−1) = s1(1, n2, t) ·(1−
p

2
) and 1−E1(n1, 1, t−1) = s2(n1, 1, t) ·(1−

p

2
)
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which gives us s1 =
1− E2(1, n2, t− 1)

1− p/2
, s2 =

1− E1(n1, 1, t− 1)

1− p/2
. For p = 0, we get

the analogous results of 4.1. The expected points of Poor can then be calculated by

E1(1, n2, t) = s1 · (1− E2(1, n2, t− 1)) + (1− s1) · [(1−
p

2
) ·

1 + s1

2
]

E2(n1, 1, t) = s2 · (1− E1(n1, 1, t− 1)) + (1− s2) · [(1−
p

2
) ·

1 + s2

2
]

We see that p changes the value of the conditional expectation when xt is larger than
the expected points in t− 1. The decision parameters will also be dependent on p.
We will focus on the decision parameters, the formulas for the expected points can
be found in Theorem 4.4 below. Now, we can take a look at the situations where the
player with launch right has his opponent down to one rocket, and a launch failure
doesn’t equal an instant loss. The decision tree is analogous to Figure 4.1.3, except

the payout for a successful launch will only be 1 −
p

2
, instead of 1. (Figure 4.2.3)

The decision parameters s3 = s1(n1, 1, t) and s4 = s2(1, n2, t) for both players in
this situation are given by the equations:

1− E2(n1, 1, t− 1) = s3 · (1−
p

2
) + (1− s3) · (1− E2(n1 − 1, 1, t− 1))

⇔ s3 =
E2(n1 − 1, 1, t− 1)− E2(n1, 1, t− 1)

E2(n1 − 1, 1, t− 1) - p/2

1− E1(1, n2, t− 1) = s4 · (1−
p

2
) + (1− s4) · (1− E1(1, n2 − 1, t− 1))

⇔ s4 =
E1(1, n2 − 1, t− 1)− E1(1, n2, t− 1)

E1(1, n2 − 1, t− 1) - p/2

3) E1(n1, 1, t)
4) E2(1, n2, t)

3) 1− E2(n1, 1, t− 1)
4) 1− E1(1, n2, t− 1)

No launch

3) 1− E2(n1 − 1, 1, t− 1)
4) 1− E1(1, n2 − 1, t− 1)

Failure

1−
p

2
Succe

ss

Laun
ch

Figure 4.2.3: Decision tree, Scenario 2, passive player with single rocket

with E1(n1, 1, t), E2(1, n2, t) being calculated the same way as in 4.1. For the general
recursion (n1, n2 > 1, t > 2) we only need to find the new s5 = s1(n1, n2, t) and
s6 = s2(n1, n2, t).

1− E2(n1, n2, t− 1) = s5 · (1−
p

2
) + (1− s5) · (1− E2(n1 − 1, n2, t− 1))

⇔ s5 =
E2(n1 − 1, n2, t− 1)− E2(n1, n2, t− 1)

E2(n1 − 1, n2, t− 1) - p/2
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1− E1(1, n2, t− 1) = s6 · (1−
p

2
) + (1− s6) · (1− E1(n1, n2 − 1, t− 1))

⇔ s6 =
E1(n1, n2 − 1, t− 1)− E1(n1, n2, t− 1)

E1(n1, n2 − 1, t− 1) - p/2

We see that the parameter p has a direct influence all throughout the recursions
(unlike in Scenario 4 later). Now, these recursions were once again programmed in
Scilab (RichVsPoor2 ). This program has the additional parameter p in addition to
the three previous variables. Running RichVsPoor2 with parameter p = 0 equals
running RichVsPoor1. In Theorem 4.5, one can find all the recursion formulas in an
overview.

Theorem 4.5. (Recursions in the Rich vs. Poor model, Scenario 2)
The following recursions describe the rich-vs-poor-model with ’lucky-loser’ rule de-
fined by parameter p:

E1,2(n1, n2, 1) =
1

2
for all n1, n2 > 0

E1,2(1, 1, 2) =
−0.25p2 + p− 1.25

p− 2
.

E1(n1, 1, 2) = E2(1, n2, 2) =
3

4
−

p

4
, for n1, n2 > 1

E1(n1, k, 2) = E2(k, n2, 2) =
1

2
−

p

4
, for n1, n2 ≥ 1, k > 1

E1(1, n2, t) = s1 · (1−E2(1, n2, t− 1)) + (1− s1) · [(1−
p

2
) ·

1 + s1

2
] n2 ≥ 1, t > 2

E2(n1, 1, t) = s2 · (1−E1(n1, 1, t− 1)) + (1− s2) · [(1−
p

2
) ·

1 + s2

2
] n1 ≥ 1, t > 2

E1(n1, 1, t) = s3 · (1− E2(n1, 1, t− 1))

+(1−s3) ·
[1 + s3

2
· (1−

p

2
)+
(
1−

1 + s3

2

)
· (1−E2(n1−1, 1, t−1)

]
n1 ≥ 2, t > 2

E2(1, n2, t) = s4 · (1− E1(1, n2, t− 1))

+(1−s4) ·
[1 + s4

2
· (1−

p

2
)+
(
1−

1 + s4

2

)
· (1−E1(1, n2−1, t−1)

]
n2 ≥ 2, t > 2

E1(n1, n2, t) = s5 · (1− E2(n1, n2, t− 1))

+(1−s5)·
[1 + s5

2
·(1−

p

2
)+
(
1−

1 + s5

2

)
·(1−E2(n1−1, n2, t−1)

]
n1, n2 ≥ 2, t > 2

E2(n1, n2, t) = s6 · (1− E1(n1, n2, t− 1))

+(1−s6)·
[1 + s6

2
·(1−

p

2
)+
(
1−

1 + s6

2

)
·(1−E1(n1, n2−1, t−1)

]
n1, n2 ≥ 2, t > 2

with the following decision parameters:

s1 =
1− E2(1, n2, t− 1)

1− p/2
s2 =

1− E1(n1, 1, t− 1)

1− p/2

s3 =
E2(n1 − 1, 1, t− 1)− E2(n1, 1, t− 1)

E2(n1 − 1, 1, t− 1)− p/2
s4 =

E1(1, n2 − 1, t− 1)− E1(1, n2, t− 1)

E1(1, n2 − 1, t− 1)− p/2

s5 =
E2(n1 − 1, n2, t− 1)− E2(n1, n2, t− 1)

E2(n1 − 1, n2, t− 1)− p/2
s6 =

E1(n1, n2 − 1, t− 1)− E1(n1, n2, t− 1)

E1(n1, n2 − 1, t− 1)− p/2
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Now, it is time to examine the results of the recursion. Once again, most of in-
terest is the value of lim

n1,t→∞
E1(n1, 1, t) (advantage of Rich) and lim

n1,t→∞
E2(n1, 1, t)

(disadvantage of Poor). For p = 0, these were
√

3 − 1 and 4 − 2
√

3 respectively. It
was first assumed that both these values would monotonically decrease for growing

p and merge in p = 1 with the result
1

2
indicating a fair game. But as one can see

in Figure 4.2.4, this is not the case:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

E2

E1

MinE2

p

Figure 4.2.4: Rich vs. Poor, Scenario 2, E1(n1, 1, t) blue, E2(n2, 1, t) red, ni, t large

Poor’s disadvantage goes down even more than previously thought, with him expect-

ing less than half a point for 0.2 < p < 1. Interesting, the values in p =
1

5
are very

even, with Rich receiving 0.7 and Poor receiving 0.5 expected points when it’s their
turn. Looking at the graph, the next question has to be: Where is the minimum
of Poor’s expected points? This was evaluated by trying out different p-values in
RichVsPoor2 :

Theorem 4.6. (Minimal expected points for Poor, Scenario 2)
In the lucky loser scenario, the minimum of Poor’s expected points is reached in

p ≈ 0.7055728 =
8

5
− 2
√

5
. In this p, the expected points of Rich are

3

5
and Poor’s

expectation for using optimal strategy is
1
√

5
.

Proof. See appendix.

The proof for Theorem 4.6 also gives us functions to calculate Rich’s and Poor’s
expected points for large t directly, given any p:

E2(p) =
1

2
(−2

√
5p2 − 16p + 12− 5p + 8) E1(p) = 1−

E2(p)

2
−

p

4

The approximate plot of the two functions is already shown Figure 4.2.4 above. But

after seeing that E2 does indeed drop below
1

2
, the other assumption made before

29



establishing the recursions has to be questioned as well: Does a rising p actually
make the game fairer? We define two metrics to examine this:

Definition 4.7. (Relative/Absolute Advantage)

Relative advantage: RA(p) =
E1(p)

E2(p)
− 1

Absolute advantage: AA(p) = E1(p)− E2(p)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0

RA(p)

AA(p) TAAMaxAA

MaxRA

TRA

p

RA(0)

AA(0)

Figure 4.2.5: Rich vs. Poor, relative and absolute advantage (Scenario 2)

We see that for small p, RA is actually increasing, whereas AA seems to be nearly
flat. For higher p, both functions begin decreasing towards 0. By analyzing both
functions, we gather exact results:

Lemma 4.8. (Properties of RA(p), AA(p))

- maxp∈(0,1)(RA(p)) =
√

2− 1 for p =
4− 2

√
2

3
≈ 0.39052

- minp>0(RA(p) ≤ RA(0)) =
28− 12

√
3

11
≈ 0.65594

- maxp∈(0,1)(AA(p)) =
1

5
for p =

1

5

- minp>0(AA(p) ≤ AA(0)) = 21
√

3− 36 ≈ 0.37307

Proof. Derivatives for the maxima, equations for the
”
turning points“.

In summary, increasing p does not necessarily help Poor to reduce the advantage
Rich has over him. To reduce the relative advantage, Poor will need p & 0.65594,
whereas smaller p-values even diminish his chances even further. If he wants to
increase his own expected points, p & 0.70557 is required. If he only wants to
reduce the absolute difference between him and Rich, p & 0.37307 will suffice.
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4.3 Scenario 3: No Launch, No win

In the first two scenarios of this model, we looked at contests in which both players
have a secondary option of winning, besides launching a rocket successfully. That is,
if Poor empties his rocket supply without any successful launch, Rich wins - and vice
versa. Now, this secondary option might not be too realistic in real-life scenarios:
Imagine two companies competing to send a satellite into space. In this situation,
it is unlikely that one company will be considered victorious just because the other
company has run out of rockets, as the common goal of satellite deployment is more
important than the contest between the companies itself.

This is where the ’No launch, no win’ rule comes into play. The secondary way
of victory is scrapped from the model in this scenario. To be declared winners, a
player must launch a rocket successfully. Waiting for the failure of the opponent
will not yield positive results - as we will see in the early stages of recursion. This
also becomes a scenario in which it is more likely that neither of the players wins.

We also have to decide what happens when one of the players wrecks his last rocket
without a successful launch. In this thesis, the other player will receive all other
days to make his launch attempts. If, for example, Poor crashes his final rocket in
t = 8, Rich will have all seven remaining days to get a launch success (and not just
four if the launching right was still alternating).
For the recursion, we will once again use Definition 4.1, and note that in this scenario
n1 or n2 can equal zero (in Scenario 1 and 2 we had n1, n2 ≥ 0). For t = 1, everything
stays the same as in Scenario 1 with one small difference:

E1(n1, k, 1) = E2(k, n2, 1) =
1

2
for all n1, n2 > 0, k ∈ N0

This means that the passive player does not need to have rockets left in t = 1 - he
will have lost at this point, though. Regardless of that, the current player still has
to get a successful launch on the last day in order to win.
For t = 2, the differences in the decision-making become even clearer. Let’s look
at it from Rich’s (Player 1) perspective in Figure 4.3.1: Now, instead of getting an

E1(n1, n2, 2)

0
No launch

0(n2 > 0 or n1 = 1)
0.5(n2 = 0, n1 > 1)

Failure

1
Succe

ss

Laun
ch

Figure 4.3.1: Decision tree, Scenario 3, t = 2

expected points value of 1−E2(n1, n2, 1), the player receives absolutely nothing by
waiting for the last day, because he can’t win through a failed launch of his opponent.
Therefore, he does the same thing as he would do in t = 1: Launch a rocket with
any x2 the day gives to him. Therefore, we receive:

E1(n1, 0, 2) = E2(0, n2, 2) =
3

4
for n1, n2 > 1, else Ed(n1, n2, 2) =

1

2
.
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In this scenario, there are also situations in which the opposing players has no rockets
left, as pictured in the decision tree in figure 4.3.2.

1) E1(n1, 0, t)
2) E2(0, n2, t)

1) E1(n1, 0, t− 1)
2) E2(0, n2, t− 1)

No launch

1) E1(n1 − 1, 0, t− 1)
2) E2(0, n2 − 1, t− 1)

Failure

1
Succe

ss

Laun
ch

Figure 4.3.2: Decision tree, Scenario 3, passive player without rockets

Note that the expected value for failure will equal 0 if n1 = 1 or n2 = 1.
The calculation for the expected points for both players in this case is found
below. For this, we simplify E1(n1, 0, t − 1) = E2(0, n2, t − 1) =: En and
E1(n1 − 1, 0, t− 1) = E2(0, n2 − 1, t− 1) =: En−1:

E1(n1, 0, t) = E2
n + (1− En) · [

1 + En

2
+ (1−

1 + En

2
) · En−1]

=
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
for n1 > 1

For n1 = 1, the model is equal to the one-player, one-rocket model in Section 2:

E1(1, 0, t) = ... =
1 + E1(1, 0, t− 1)2

2

Looking at the situations in which one of the players has a single rocket left, we can
see that there is no difference to the decision-making in Scenario 1, and the decision
trees apply as well as the optimal decision parameter, see Figure 4.1.2/4.1.3 and
calculations of s1 to s4. This is because destroying the the last rocket still loses that
player the game, just like in the base scenario. Therefore, the potential outcomes for
E1(1, n2, t) and E2(1, n2, t) don’t change. The same can be said about the general
recursion for n1 > 1, n2 > 1, t > 2, for which the decision parameters s5 and s6
found in Theorem 4.3 apply as well.

Theorem 4.9. (Recursions in the Rich vs. Poor model, Scenario 3)
The following recursions describe the rich-vs-poor-model with ’no launch, no win’
rule.

E1(n1, n2, 1) = E2(n1, n2, 1) =
1

2
for all n1, n2 ≥ 0 except n1 = n2 = 0.

E1(n1, 0, 2) = E2(0, n2, 2) =
3

4
for all n1, n2 > 1

E1(n1, n2, 2) = E2(n1, n2, 2) =
1

2
for all n1, n2 ≥ 1

E1(1, 0, t) =
1 + E1(1, 0, t− 1)2

2
E2(0, 1, t) =

1 + E2(0, 1, t− 1)2

2

32



E1(n1, 0, t) = E2(0, n2, t) =
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
for n1, n2 > 1,

En = E1(n1, 0, t− 1) or E2(0, n2, t− 1), En−1 = E1(n1 − 1, 0, t− 1) or E2(0, n2 − 1, t− 1)

and for all other scenarios, the formulas and decision parameter s1,...,s6 stated in
Theorem 4.3 in Section 4.1 apply for the reasons mentioned above.

Looking at this scenario from a programming point of view, we now see that the
extra rule essentially adds rows/columns to our multi-dimensional array already
used in RichVsPoor1 to determine expected points of both players in the basic
scenario. Now, because numbering of rows/columns in Scilab starts with 1, we need
to be careful to mind the index offset when altering the code to fit the scenario.
This was done in RichVsPoor3, which has the same input variables as RichVsPoor1
and can be found on the CD. We will also have to watch out for the indices when
comparing the results of the two scenarios, as for example E(2, 3, 1, 5) of the output
of RichVsPoor1 should be compared to RichVsPoor3 ’s output of E(2, 4, 2, 5) due
to index offset.

Letting the program calculate the recursions for us, we find that the limits found
in Section 4.1/Theorem 4.4 apply in this scenario as well. The fact that both
players have to successfully launch a rocket to get the full point doesn’t change the
advantage Rich has over Poor for large t.

Comparing the results of Scenario 1 with those in Scenario 3 (CompareRVP), we see
that for smaller t, the active player’s expected points are slightly reduced for even t
in scenario 3 - whereas there is a slight increase for the active player’s expectation in
odd t. This is due to the fact that the only value different in this model compared

to Scenario 1 is E1(n1, 1, 2), E2(1, n2, 2): In Scenario 1, this equals
3

4
for n1, n2 > 1

because the active player can hope for a failed attempt of his opponent in t = 1,

whereas in this Scenario he is forced to attempt a launch himself, giving him
1

2
expected points.

This small difference causes the fluctuations for small t. These increases/decreases
vanish rapidly though, and for large t, we end up with the same results as in the
basic scenario in Section 4.1.
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4.4 Scenario 4: Consolation Points

So far, we have only looked at models where both players are penalized for letting
time run out, i.e. both losing and getting zero points when t reaches 0. Now, we
take a look at a model in which both players are awarded a compensation if neither
of them manage to successfully launch a rocket in the given time window. In real
life, this could be seen as a payment of an insurance company.
The players will receive c ∈ (0, 1) if they both still have rockets left at t = 0. We
still uphold the rule that if one player runs out of rockets, the other player wins the
point. This means that players aren’t forced to always attempt a launch when time
is running out, if they see their chance at compensation is higher.
Firstly, let’s take a look at the extreme values of c again. If c = 0, we receive the
same results as in the basic scenario in section 4.1. For c = 1, the sky will be clear
of rockets - because neither of the players has any incentive of attempting launches,
as they will both receive the full point anyway. So, these to values aren’t really of
interest. So, we go ahead and study the scenario for c ∈ (0, 1)
For t = 1 we had a forced attempt in the other scenarios. Now, the decision of the
player depends on the number of rockets he has:

E1(1, n2, 1) = c · c + (1− c) · 1 + c

2
for n2 ≥ 1

E1(n1, n2, 1) =
1 + c

2
for n1 > 1.

If he only has a single rocket remaining, he will not get a compensation if he has a
failed launch attempt on the final day. With more than one rocket remaining, he
will have the compensation guaranteed and attempts a launch for any x1 to take a
chance of winning the full point. Player 2 will decide the same way.

For t = 2, we will take a look at the decision tree for Rich:

E1(n1, n2, 2)

n2 = 1: 1.5c2 − c + 0.5
n2 > 1: 0.5c

No launch

n1 > 1, n2 > 1: 0.5c
n1 > 1, n2 = 1: 1.5c2 − c + 0.5
n1 = 1: 0

Failure

1
Succe

ss

Laun
ch

Figure 4.4.1: Decision tree, Scenario 4, t = 2

We see the same situation for both players: If the active player has more than one
rocket left, he will attempt a launch regardless of x2, since he has nothing to lose as
the expected points for not launching and failing the launch attempt are identical.
Let’s look at Rich’s decision in t = 2 in particular: He knows that if n2¿1, Poor will
make an attempt for any x1 in t = 1, succeeding half the time on average. There-

fore, Rich receives an expected
c

2
if he doesn’t launch or fails his attempt (if n1 > 1).
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If n2 = 1, Poor will either not launch in t = 1, giving both players c, or risk a
launch and either get the full point or none. Rich’s expected return in this case is

c · c + (1− c) · (1− 1 + c

2
) = 1.5c2 − c + 0.5.

All in all, we receive for n1, n2 > 1:

E1,2(1, 1, 2) = (1.5c2 − c + 0.5)2 + (1− (1.5c2 − c + 0.5)) ·
1 + (1.5c2 − c + 0.5)

2
= 1.125c4 − 1.5c3 + 1.25c2 − 0.5c + 0.625

E1(n1, 1, 2) = E2(1, n2, 2) = 0.5 · (1 + (1.5c2 − c + 0.5) = 0.75c2 − 0.5c + 0.75

E1(1, n2, 2) = E2(n1, 1, 2) = (
c

2
)2 + (1− c

2
) · 1 + 0.5c

2
=

c2

8
+

1

2

E1,2(n1, n2, 2) =
1

2
+

c

4

Moving forward to the case where the player with launch option has a single rocket
with t > 2, with E2(n1, 1, t) calculated analogously:

E1(1, n2, t) = (1− E2(1, n2, t− 1))2 + E2(1, n2, t− 1) ·
1 + (1− E2(1, n2, t− 1))

2

In this situation, a failed launch will lead to 0 points, just like in Section 4.1. Now
we examine the recursion when the roles are reversed, i.e. the player with more
rockets having the launch option. We find that the decision making is the same as
in Section 4.1, as well as the calculation of decision parameters (see Figure 4.1.3 for
the decision tree):

s1(n1, 1, t) =
E2(n1 − 1, 1, t− 1)− E2(n1, 1, t− 1)

E2(n1 − 1, 1, t− 1)
= s3

s2(1, n2, t) =
E1(1, n2 − 1, t− 1)− E1(1, n2, t− 1)

E1(1, n2 − 1, t− 1)
= s4

with the corresponding expectations being calculated as in Theorem 4.3. The same
can be said about the decision parameters s5 and s6, which are the same as in
Theorem 4.3:

s5 = 1−
E2(n1, n2, t− 1)

E2(n1 − 1, n2, t− 1)
, s6 = 1−

E1(n1, n2, t− 1)

E1(n1, n2 − 1, t− 1)
.

We now quickly summarize the recursions for Scenario 4:

Theorem 4.10. (Recursions in the Rich vs. Poor model, Scenario 4)
The following recursions describe the rich-vs-poor-model with consolation rule:

E1(1, n2, 1) = E2(n1, 1, 1) =
1 + c2

2
E1(n1, k, 1) = E2(k, n2, 1) =

1 + c

2
, k ≥ 1, ni > 1

E1,2(1, 1, 2) =
9c4

8
− 3c3

2
+

5c2

4
− c

2
E1(1, n2, 2) = E2(n1, 1, 2) =

c2

8
+

1

2
, ni > 1

E1(n1, 1, 2) =
3c2

4
− c

2
+

3

4
, n1 > 1 E1(n1, n2, 2) =

c

4
+

1

2
, ni > 1
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For all other cases, the formulas to calculate decision parameters s1 to s6 and ex-
pected points found in Theorem 4.3 apply.

Using RichVsPoor4 we calculate the recursions in Scilab. Just as in Scenario 3, the
findings in Theorem 4.4 also apply in this scenario. Even a c very close to 1 has no
effect on the effected points of Rich and Poor for large t. But why does c not effect
the results more? To find an easy answer, we can take a look at Rich’s decision
making in t = 1, when he has more than one rocket left: As one can see in Figure
4.4.2, Rich will get c = 1− ε (ε > 0), for either a failed launch or skipping the day.
But no matter how small ε becomes, Rich will always attempt a launch to get it -
and if he is successful, Poor is left with nothing.

E1(n1, n2, 1)

1− ε
No launch

1− ε

Failure

1
Succe

ss

Laun
ch

Figure 4.4.2: Decision tree, Scenario 4, n1 > 1, c = (1− ε), t = 1

For smaller t, we can also compare this model to the base scenario without conso-
lation (Section 4.1). Using compareRVP, we take at look at the difference between
running RichVsPoor(10,10,20) and RichVsPoor4(10,10,0.5,20). We find mixed re-

sults: For even t, Rich’s expectation is reduced for n2 <
t

2
and increased for n2 >

t

2
(and vice versa for Poor), whereas for odd t(t > 1), Rich’s expectation is increased

for n1 < d
t

2
e and reduced for n1 > d

t

2
+1e. Similarly to Scenario 3, these differences

quickly converge to 0 for rising t: The maximum absolute difference in our example
is always found in n1 = n2 = 10:

Table 4.4.1: Difference Scenario 1 − Scenario 4 (c=0.5) , E1

t 1 2 3 4 5 6 7 8 9 10

Diff(10,10,t) −1

4
−1

8

1

16
− 1

32

1

64
− 1

128

1

256
− 1

512

1

1024
− 1

2048

The fact that the maximum difference gets halved for every increase of t is not a

”
special effect“ of choosing c =

1

2
, it seems to work for all other c ∈ (0, 1) as well,

and can probably be proven using the recursion formulas (not part of this thesis).

After the three scenarios with one rule variant, we now move on to the models where
two rules have been changed.
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4.5 Scenario 5: Lucky Loser + No Launch, No Win

After looking at three scenarios with a single rule change, we now take a step further
and combine two of the three rule variants to examine possible effects this might
have on the model. First off, we will combine the Lucky loser rule with parameter
p (as seen in Section 4.2) and the ”No launch, no win” rule (as previously discussed
in Section 4.3).

For t = 1, we noticed in the previous sections that both these rules have no influence
on the players’ decision-making or expected points, so we can state that:

E1(n1, k, 1) = E2(k, n2, 1) =
1

2
for all n1, n2 > 0, k ∈ N0

For t = 2, we notice a similar change to the decision-making as in Figure 4.3.1, with

the pay-out for a successful launch being reduced to 1 −
p

2
due to the lucky loser

rule. The player will also receive nothing if he waits for t = 1. Therefore, the player
will always attempt a launch in t = 2 and will receive

E1(n1, n2, 2) = E2(n1, n2, 2) =
1

2
· (1−

p

2
) =

1

2
−

p

4
for all n1, n2 ≥ 1.

E1(n1, 0, 2) = E2(0, n2, 2) =
1

2
· (1−

p

2
)+

1

2
·
1− p

2

2
=

3

4
− 3

8
p for all n1, n2 > 1.

Because the NLNW rule is in effect, we examine the situations in which one of the
players has zero rockets next (t > 1). With this rule in place, the Lucky Loser rule
does not affect the decision-making in these cases, because the player with 0 rockets
can’t have another try if his opponent succeeds in launching a rocket. Therefore,
the decision tree is the same as in Section 4.3 and is depicted in Figure 4.3.2 - if
n1 = 1 or n2 = 1, the expected points for a failed launch are reduced to 0, just as
in Scenario 3. The recursion formula once again can be calculated as

E1(n1, 0, t) = ... =
1 + E1(n1, 0, t− 1)2

2
, E2(0, n2, t) = ... =

1 + E2(0, n2, t− 1)2

2

Next up, the cases in which one of the players has a single rocket left: Here, the
NLNW rule doesn’t have any effect on the recursion formulas. The decision tree for
E1(1, n2, t) and E2(n1, 1, t) can be found in Figure 4.2.2, the tree for E1(n1, 1, t) and
E2(1, n2, t) is shown in Figure 4.2.3. The decision parameters s1 to s6 are calculated
as outlined in Section 4.2.

As one might notice, these two rules don’t really interact with each other. This is
due to their different nature: The lucky-loser rule only really comes into play if both
players have rockets, while the NLNW rule only has a visible effect when one player
has no rockets left. For evaluating the recursion results, RichVsPoor5 is used, with
the standard parameter plus an additional parameters p for the lucky-loser rule and
index offset to cover the NLNW rule.

Theorem 4.11. (Recursions in the Rich vs. Poor model, Scenario 5)
The following recursions describe the rich-vs-poor-model with ’no launch, no win’
and ’lucky-loser’ rule defined by parameter p:
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E1(n1, k, 1) = E2(k, n2, 1) =
1

2
for all n1, n2 > 0, k ≥ 0

E1(n1, n2, 2) = E2(n1, n2, 2) =
1

2
−

p

4
for all n1, n2 ≥ 1

E1(n1, 0, 2) = E2(0, n2, 2) =
3

4
− 3

8
p for all n1, n2 > 1

E1(1, 0, t) =
1 + E1(1, 0, t− 1)2

2
E2(0, 1, t) =

1 + E2(0, 1, t− 1)2

2

E1(n1, 0, t) = E2(0, n2, t) =
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
for n1, n2 > 1,

En = E1(n1, 0, t− 1) or E2(0, n2, t− 1), En−1 = E1(n1 − 1, 0, t− 1) or E2(0, n2 − 1, t− 1)

For all other cases, the formulas to calculate decision parameters s1 to s6 and ex-
pected points found in Theorem 4.5 apply.

As one could expect, the limits for Rich’s and Poor’s expectation for large t are the
same as pointed out in Theorem 4.6, where

E2(p) =
1

2
(−2

√
5p2 − 16p + 12− 5p + 8)

E1(p) = 1−
E2(p)

2
−

p

4

or every p ∈ (0, 1) and large t.

For smaller t, we can also compare the numbers of Scenario 5 and Scenario 2, finding
a similar effect as during the comparison of Scenario 1 and Scenario 3: Adding the
NLNW rule to the game reduces the expectation of the active player in even t,
whereas it increases his expectation in odd t. Once again, these differences quickly
converge to 0 for rising t: For t = 20, the maximum absolute difference between the
two scenarios in our examples approximately 1.82 · 10−5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

t

Figure 4.5.1: Maximum absolute difference of E1 between Scenario 2 and 5, p =
1

2

38



4.6 Scenario 6: Lucky Loser + Consolation Points

In this section we combine the two rule variations that can be adjusted with a
parameter: The ”lucky loser” rule with it’s parameter p ∈ (0, 1) defining how many
points a losing player can still win after his opponent’s successful launch, and the
consolation rule, with c ∈ (0, 1) being the amount of points both players receive if
time runs out without any successful launch.

With two parameters to control the model, this should - at least in theory - be the
most interesting scenario with two rule variations. But first, we will take a look at
the recursion.
For t = 1, the lucky-loser rule doesn’t affect the player. The consolation rule on the
other hand does influence the expected points and we receive the same formula as
in Section 4.4:

E1(1, n2, 1) = E2(n1, 1, 1) =
1 + c2

2
, ni ≥ 1

E1(n1, k, 1) = E2(k, n2, 1) =
1 + c

2
, k ≥ 1, ni > 1

For t = 2, we look at the decision tree for player 1, which is very similar to the one
in Figure 4.4.1:

E1(n1, n2, 2)

n2 = 1: 1.5c2 − c + 0.5
n2 > 1: 0.5c

No launch

n1 > 1, n2 > 1: 0.5c
n1 > 1, n2 = 1: 1.5c2 − c + 0.5
n1 = 1: 0

Failure

1−
p

2
Succe

ss

Laun
ch

Figure 4.6.1: Decision tree, Scenario 6, t = 2

E1,2(1, 1, 2) = P (x2 · (1−
p

2
) < 1.5c2 − c + 0.5) · (1.5c2 − c + 0.5)

+P (x2 · (1−
p

2
) ≥ 1.5c2 − c + 0.5) · E(x2 · (1−

p

2
)|x2 · (1−

p

2
) ≥ 1.5c2 − c + 0.5)

=
−2.25c4 + 3c3 − 2.5c2 + c− 0.25p2 + p− 1.25

p− 2

E1(n1, 1, 2) = E2(1, n2, 2) =

(1.5c2 − c + 0.5) + (1−
p

2
)

2
=

3c2

4
−

p

4
− c

2
+

3

4

E1(1, n2, 2) = E2(n1, 1, 2) = (
c

2
)2 + (1− c

2
) · [(1−

p

2
) · 1

2
(1 +

c

2
)] =

pc2

16
−

p

4
+

c2

8
+

1

2

E1,2(n1, n2, 2) =
1

2
(1−

p

2
+

c

2
) =

c− p + 2

4
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Theorem 4.12. (Recursions in the Rich vs. Poor model, Scenario 6)
The following recursions describe the rich-vs-poor-model with consolation’ and ’lucky-
loser’ rule defined by parameters c and p:

E1(1, n2, 1) = E2(n1, 1, 1) =
1 + c2

2
, ni ≥ 1

E1(n1, k, 1) = E2(k, n2, 1) =
1 + c

2
, k ≥ 1, ni > 1

E1,2(1, 1, 2) =
−2.25c4 + 3c3 − 2.5c2 + c− 0.25p2 + p− 1.25

p− 2

E1(n1, 1, 2) = E2(1, n2, 2) =
3c2 − p− 2c + 3

4

E1(1, n2, 2) = E2(n1, 1, 2) =
pc2 − 4p + 2c2 + 8

16

E1,2(n1, n2, 2) =
c− p + 2

4

For all other cases, the formulas to calculate decision parameters s1 to s6 and ex-
pected points found in Theorem 4.5 apply.

The recursion was programmed in RichVsPoor6, which has 5 parameters: p, c and
the boundaries for calculation n1max, n2max, tmax. Running the program shows
that the results for large t resemble those found in Scenario 2, meaning that the
compensation once again doesn’t influence the

”
big picture“ (similar to the com-

parison between scenarios 1 and 4).

Comparing Scenario 6 and Scenario 2 for the variables p = c = 0.5 and smaller t
gives us results similar to the comparison of Scenarios 1 and 4: For even t, Rich’s

expectation is reduced for n2 <
t

2
and increased for n2 ≥

t

2
(and vice versa for Poor

and n1), whereas for odd t(t > 1), Rich’s expectation is increased for n1 < b
t

2
c and

reduced for n1 ≥ b
t

2
c. It isn’t clear whether this is the case for all combinations of

c and p, which could be a topic of further research.
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4.7 Scenario 7: No Launch, No Win + Consolation Points

Combining these two rules may seem contradictory at first glance - given that with
the first rule, nobody wins by not launching, and the other one gives each player
a compensation c ∈ (0, 1) if they both can’t launch a rocket. This paradox might
make for some interesting results though, so we will examine the recursion for this
scenario as well.

In t = 1, the NLNW rule does not affect the expected points the players will receive
(as pointed out in Section 4.3), but the compensation comes into play, so the result
is equal to the one gathered in Section 4.4:

E1(1, n2, 1) = c · c + (1− c) · 1 + c

2
, E1(n1, n2, 1) =

1 + c

2
for n1 > 1.

and

E1(n1, 0, 1) = E2(0, n2, 1) =
1

2
, E(n1 > 1, 0, 2) = E2(0, n2 > 1, 2) =

3

4

For t = 2, things now get a little bit tricky, as both rule variations on their own
had an effect on the expected points: In Section 4.3 (only NLNW), we found that

E1,2(n1, n2, 2) =
1

2
for all n1, n2 ≥ 1, as both players would lose if they didn’t

manage to launch a rocket in t = 2. During the consolation scenario in Section 4.4,
we found that the consolation c did influence the decision in t = 2 as well. So let’s
look at the decision tree for Rich when we combine both rules:

E1(n1, n2, 2)

n2 > 1: 0.5c
n2 = 1: c2

No launch

n1 > 1, n2 > 1: 0.5c
n1 > 1, n2 = 1: c2

n1 = 1: 0

Failure

1
Succe

ss

Laun
ch

Figure 4.7.1: Decision tree, Scenario 7, t = 2

If Poor only has one rocket, he will receive c · c+(1− c) · 1 + c

2
. Rich will in this case

only get c if Poor doesn’t launch, which happens with probability P (x1 < c) = c.
If Poor attempts a launch with his last rocket, he will either fail - and lose the
compensation for both players - or succeed and win the full point. When Poor has
more than one rocket in t = 1, he will launch for any xi, failing the attempt half

the time, thus giving Rich
c

2
.
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E1,2(1, 1, 2) = (c2)2 + (1− c2) · (1 + c2

2
) =

1 + c4

2

E1(n1, 1, 2) = E2(1, n2, 2) =
1 + c2

2

E1(1, n2, 2) = E2(n1, 1, 2) = (
c

2
)2 + (1− c

2
) · (

1 + c/2

2
) =

c2

8
+

1

2

E1,2(n1, n2, 2) =
1 + c/2

2
=

1

2
+

c

4

With the NLNW rule in place, we will also have to look at the cases in which one
player has no rockets left. Because the consolation is only given out when both
players still have rockets, it has no effect here, therefore we also apply the formulas
first presented in Section 4.3 in this scenario. Looking back to Sections 4.3 and 4.4,
we can see that there are no further cases to examine. In these cases, neither rule
effects the nature of the recursion formulas or calculation of decision parameters.

Theorem 4.13. (Recursions in the Rich vs. Poor model, Scenario 7)
The following recursions describe the rich-vs-poor-model with ’no launch, no win’
and ’consolation’ rule defined by parameter c:

E1(1, n2, 1) = E2(n1, 1, 1) =
1 + c2

2
E1(n1, k, 1) = E2(k, n2, 1) =

1 + c

2
, k ≥ 1, ni > 1

E1(n1, 0, 1) = E2(0, n2, 1) =
1

2
E(n1, 0, 2) = E2(0, n2, 2) =

3

4
, ni > 1

E1,2(1, 1, 2) =
1 + c4

2
E1(n1, 1, 2) = E2(1, n2, 2) =

1 + c2

2

E1,2(n1, n2, 2) =
1

2
+

c

4
E1(1, n2, 2) = E2(n1, 1, 2) =

c2

8
+

1

2

E1(1, 0, t) =
1 + E1(1, 0, t− 1)2

2
E2(0, 1, t) =

1 + E2(0, 1, t− 1)2

2

E1(n1, 0, t) = E2(0, n2, t) =
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
for n1, n2 > 1,

En = E1(n1, 0, t− 1) or E2(0, n2, t− 1), En−1 = E1(n1 − 1, 0, t− 1) or E2(0, n2 − 1, t− 1)

For all other cases, the formulas to calculate decision parameters s1 to s6 and ex-
pected points found in Theorem 4.3 apply.

Comparing Scenarios 3 and 7, the added consolation rule leads to the active player’s
expected points increasing for even t and decreasing for odd t, which these differences
quickly converging to 0. Comparing Scenario 4 to 7, the added NLNW rule leads to
a decrease in the active player’s expectation in t = 2, which then alternates - giving
an increase in odd t. All these difference converge to 0 quickly as well.
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4.8 Scenario 8: Lucky loser + No Launch, No Win + Consolation
Points

Finally, we combine all three rule variants in the model. Exploring the recursion,
we know that the only rule applying for t = 1 is the consolation rule, thus:

E1(1, n2, 1) = E2(n1, 1, 1) =
1 + c2

2
, ni ≥ 1

E1(n1, k, 1) = E2(k, n2, 1) =
1 + c

2
, k ≥ 1, ni > 1

E1(n1, 0, 1) = E2(0, n2, 1) =
1

2
, ni ≥ 1

For t = 2, the decision tree for Rich looks as follows:

E1(n1, n2, 2)

n2 > 1: 0.5c
n2 = 1: c2

No launch

n1 > 1, n2 > 1: 0.5c
n1 > 1, n2 = 1: c2

n1 = 1: 0

Failure

1−
p

2
Succe

ss

Laun
ch

Figure 4.8.1: Decision tree, Scenario 8, t = 2

E1,2(1, 1, 2) = (c2)2 + (1− c2) · (
(1− p/2) + c2

2
) =

2c4 + c2p− p + 2

4

E(n1, 0, 2) = E2(0, n2, 2) =
3

4
, ni > 1

E1(n1, 1, 2) = E2(1, n2, 2) =
1− p/2 + c2

2

E1(1, n2, 2) = E2(n1, 1, 2) = (
c

2
)2 + (1− c

2
) · (

1− p/2 + c/2

2
) =

c2 + cp− 2p + 4

8

E1,2(n1, n2, 2) =
(1− p/2) + c/2

2
=

2− p + c

4

Due to the NLNW rule, we will also consider cases in which one of n1, n2 equals
zero. For t ≥ 3, the recursion formulas found in the Lucky loser model (Scenario 2)
apply.

Theorem 4.14. (Recursions in the Rich vs. Poor model, Scenario 8)
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E1(1, n2, 1) = E2(n1, 1, 1) =
1 + c2

2
E1(n1, k, 1) = E2(k, n2, 1) =

1 + c

2
, k ≥ 1, ni > 1

E1(n1, 0, 1) = E2(0, n2, 1) =
1

2
, ni ≥ 1 E(n1, 0, 2) = E2(0, n2, 2) =

3

4
, ni > 1

E1,2(1, 1, 2) =
2c4 + c2p− p + 2

4
E1(n1, 1, 2) = E2(1, n2, 2) =

1− p/2 + c2

2

E1,2(n1, n2, 2) =
2− p + c

4
E1(1, n2, 2) = E2(n1, 1, 2) =

c2 + cp− 2p + 4

8

E1(1, 0, t) =
1 + E1(1, 0, t− 1)2

2
E2(0, 1, t) =

1 + E2(0, 1, t− 1)2

2

E1(n1, 0, t) = E2(0, n2, t) =
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
for n1, n2 > 1,

En = E1(n1, 0, t− 1) or E2(0, n2, t− 1), En−1 = E1(n1 − 1, 0, t− 1) or E2(0, n2 − 1, t− 1)

For all other cases, the formulas to calculate decision parameters s1 to s6 and ex-
pected points found in Theorem 4.5 apply.

Comparing the results to the two-rule-change scenarios didn’t give us new informa-
tion.
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5 The SpaceX Model

”
SpaceX designs, manufactures and launches advanced rockets and space-

craft. The company was founded in 2002 to revolutionize space technol-
ogy, with the ultimate goal of enabling people to live on other planets.“1

A significant part of the
”
revolution“SpaceX is working on are re-usable rocket/

rocket stages. Many recent missions have been satellite deployments, in which first,
the flagship Falcon 9 rocket was launched and brought the payload into orbit via
the Dragon spacecraft. Afterwards, the first stage of the Falcon 9 is directed back
to Earth and landed either on land or on a drone-ship in the ocean. Milestones
included:

• First soft water landing: April 20142

• First successful landing on ground: December 21, 20153

• First successful landing on drone-ship: April 8, 20164

The development of re-usable rockets is the central part of reducing space travel
costs to make repeated Mars flights financially feasible - these are planned for late
2022.5 Based on rocket launches and landings, we will now build another model.

5.1 Two-Parameter Model

In the simplest version of this model, we will use two variables to describe the
decision-making of the starter, who has only a single rocket. One, called xt, is the
probability for a successful rocket launch. It is equivalent to the xt used in Sections
3 and 4, and will be uniformly distributed in (0, 1). The second value, yt describes
the probability of a successful landing of the rocket, whether on land or on sea. In
the first version of the model, yt will be independent from xt with the same uniform
distribution on (0, 1).

The starter will gain 1 point if both launch and landing of the rocket are a success,
and receive a ∈ [0, 1] points if only the landing fails. If the launch fails, he will
receive no points. Analogously to Sections 2 and 3, we define x1 and y1 as the
success probabilities on the last day before time runs out. The starter knows the
values of the current day and we will once again use recursion to gather the ex-
pectation Et of the starter if he makes optimal decisions every day. For t = 1, we get

In t = 1, the starter has no more incentive to wait, given he will get no points if
time runs out. Therefore, he will try launching with any (x1, y1) and his expected
points return is

1http://spacex.com/about/, opened 1st October 2016
2Video: https://www.youtube.com/watch?v=CQnR5fhCXkQ
3Video: https://www.youtube.com/watch?v=1B6oiLNyKKI
4Video: https://www.youtube.com/watch?v=sYmQQn_ZSys
5http://www.spacex.com/sites/spacex/files/mars_presentation.pdf, page 47
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Figure 5.1.1: SpaceX model, t = 1

E1 = P (launch failure) · 0
+P (launch success) · (P (landing success) · 1 + P (landing failure) · a)

= (1− x1) · 0 + x1 · (y1 · 1 + (1− y1) · a), and given E(x1) = E(y1) =
1

2

=
1

2
· 0 +

1

2
· (1

2
· 1 +

1

2
· a) =

1

4
+

1

4
· a

For t = 2, the starter now also has the option to not attempt a launch at all. The
decision tree can be found below - to calculate the expected points, we will once
again compare the value of waiting, i.e. E1, to the expected points of launching the
rocket LV , given by:

LV = (1− x2) · 0 + x2 · (y2 · 1 + (1− y2) · a) = x2 · (y2 + (1− y2) · a)

As we can see, the expected launch value will always be ’constant’ for any t. Nev-
ertheless we still have to consider LV as a random value depending on both input
variables.

E(LV ) = E[xi · (yi + (1− yi) · a)]
= E[xi · yi + xi · (1− yi) · a]

= E(xi · yi) + E(xi · yi) · a =
1

4
+

1

4
· a.
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Launch failure
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Figure 5.1.2: SpaceX model, t = 2

The recursion formula for t > 2 is given by

Et = P (LV < Et−1) · Et−1 + P (LV ≥ Et−1) · E(LV |LV > Et−1)
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For the recursion, we have to examine the distribution of LV . Given both xt and yt
and random, uniformly distributed variables, the cumulative distribution function
of LV is pretty complicated.
FM (m) = P (M ≤ m) = E[1{M≤m}] =

∫
M≤m f(x, y)d(x, y)

An alternative for evaluating the distribution and density functions of LV is based
in the use of Monte-Carlo algorithm to get an approximation of the expected launch
value. The pseudo-code for the algorithm can be found below, the Scilab implemen-
tation on the CD. This Monte-Carlo method has another advantage besides avoiding
having to calculate complicated density functions: We can also easily substitute the
uniformly, independent random variables with other, ’customized’ distributions, and
check the (approximated) results there. This can be done easily by editing the line
in which the random numbers are generated.

Algorithm 1 Monte Carlo Algorithm for SpaceX Model

function SpaceX(a, t,mc) . a payout for successful launch, t number of
recursions, mc number of random numbers generated for each day.

E ← zeros(t, 1)
E1 ← 1/4 + (1/4) ∗ a
P ← zeros(t, 1)
CE ← zeros(t, 1)
for i← 2 to t do

Z ← zeros(mc,1)
k ← 0 . Counter for LV < Et−1
s ← 1 . Counter for LV ≥ Et−1

. Calculating P(Launch value > Wait value)
for j ← 1 to mc do

R ← rand(2, 1) . Randomize xt and yt
LV ← R1 ∗ (R2 + (1−R2) ∗ a) . Calculate launch value
if LV < Ei−1 then . Launch value under ’wait’ value

k ← k + 1
else

s ← s + 1
Zs ← LV ; . Save launch value for later calculation

j ← j + 1

CEi ← (
∑

Z)/s . Calculate the conditional expectation
Pi ← k/mc . Calculate P (LV < Ei−1)
Ei ← Pi ∗ Ei−1 + (1− Pi) ∗Bi

return E,P, Z,B

Let’s take a look at the results: First a comparison between the expected points Et,
t = 1, ..., 50 for a = 0 (blue), a = 0.25 (green), a = 0.5 (violet), a = 0.75 (red) and
a = 1 (black) in Figure 5.1.3. For up to t = 100 and with a Monte-Carlo parameter
of 105, the algorithm took about 35 seconds for each variation of a on a standard
PC.
We can see that Et converges to 1 more quickly for higher a, which is obvious since
it increases the players expected points right from t = 1. In a = 1, in which the
landing doesn’t matter, we receive the same model as already discussed in Section
2. To illustrate the different growth of Et for different a, SpaceXbarrier was used.
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It calculates min(t | Et > b) for any given barrier(s) b. The results for various a
and barriers b = 0.8, 0.9, 0.95, 0.99, 0.999 with mc = 105 can be found in Table 5.1.1.
For a = 1, we used the formula found in Section 5.2 to evaluate Et exactly. The
estimations for b = 0.999 are based on the seemingly linear growth of the

”
barrier

Et for b = 0.8, 0.9, 0.95 and 0.99.
This means that for low a, any player that wants a 99% chance of getting the full
point must have a lot of time at his hands - for a = 0.4 and one launch opportunity
per day, he would need to have around eighteen-thousand days, or about forty-nine
years. This is an eternity compared to the just over six months he needs to have for
a 99% chance of succeeding when a = 1, i.e. when landing is irrelevant.

5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Figure 5.1.3: SpaceX model, Et for t up to 50, a = 0, 0.25, 0.5, 0.75, 1, mc = 105

Table 5.1.1: Barriers in the SpaceX model (*=exact calculation)

a
b

0.8 0.9 0.95 0.99 0.999

0* 63 279 1,163 29,840 2,998,486

0.2 53 226 931 23,906 2.4 · 106 (est.)

0.4 40 170 698 17918 1.8 · 106 (est.)

0.6 28 114 468 11,922 1.2 · 106 (est.)

0.8 16 59 235 5,973 0.6 · 106 (est.)

1* 6 16 35 193 1,991
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5.2 Multi-Player-Teams With Majority Decision

The next model features multiple players collaborating on a space travel mission.
Imagine a rocket to deploy multiple satellites in orbit, or delivering multiple rovers
or probes to another object in space. To save costs, companies might choose to work
together to maximize efficiency and reduce costs. For this scenario, we define the
following model:

Definition 5.1. (Team model with majority decision)
- n players are using a single rocket for their individual missions
- t days to launch the rocket, otherwise mission fails
- Common parameter xi ∼ U(0, 1) denotes launch success probability for i-last day
- yi,k ∼ U(0, 1) denotes probability of player k succeeding in his individual mission
- Each player only sees xi and his own yi,k
- Regular Mission success: Launch and majority of individual players successful.
- Et probability of regular mission success with t remaining days.
- Mt personal mission success probability for each player with t days left.
- All xi, yi,k are independent.

In this thesis, we will focus on the case n = 3. This gives us:

Regular mission success (RMS):
Launch and at least two of the three players’ missions are successful.

Total mission success (TMS):
Launch and all three players’ missions are successful.

The team will try to maximize Et. We can also define two voting modes:

Launch by simple majority:
Launch attempt if at least two of the three players agree to it.

Launch by unanimous decision:
Launch attempt only if all three players agree to it.

Before we take a look at the decision making in this model, we can already evaluate
Et (the expected chance of a RMS) for t = 1. Given that the mission will fail when
time runs out, there is no voting necessary and players are forced to attempt a
launch given any x1, y1,1, y1,2, y1,3:

E1 = P (RMS) = P (at least two players and launch successful)

= E(x1) · (P (three missions successful) + P (two missions successful))

=
1

2
· [(1

2
)3 + 3 · (1

2
· 1

2
· (1− 1

2
)] =

1

2
· [1

8
+

3

8
] =

1

4
.

For t ≥ 2, we now have to take a look at the decision making: For this, we have
to analyze what parameters are known to each player. In the definition, we stated
that he only sees xt, the launch parameter, and his individual mission parameter
yi. One could argue that each player also knows Et−1, i.e. the mission success rate
if the day is skipped.
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The player can use xt and yt,i and calculate his personal success probability (PSP):

PSP (t, i) = xt · yt,i, for i = 1, 2, 3.

Now he has a value on which base he can make a decision. In the previous chapters,
it was always quite clear how a player makes the

”
right“ decision. Now, it’s not

quite as clear.
He can now compare his PSP to his personal expected win rate in t, given by Mt,
for t = 1 this gives us

M1 = E(x1) · E(y1,i) =
1

4
for i = 1, 2, 3.

This result is easy to explain: With only the last day left, the player will make
an attempt at launch and individual mission in any case, similarly to the decisions
in the previous sections. He therefore will have the expected value of x1 and y1,k,

which given their distribution both equal
1

2
, getting multiplied with each other due

to their independence. For t = 2, things get a bit more complex - we will leave out
the k parameter for now, as Mt will be the same for each player:

M2 = P (x2 · y2 ≤M1) ·M1 + P (x2 · y2 > M1) · E(x2 · y2|x2 · y2 > M1)

M2 = P (x2 · y2 ≤
1

4
) · 1

4
+ P (x2 · y2 >

1

4
) · E(x2 · y2|x2 · y2 >

1

4
)

In the first part of the formula, the PSP is lower than the expected value of the last
day, the player will therefore vote to skip the penultimate day and try on the last
day.
In the second part, the player will vote for a mission attempt, getting the conditional

expectation of x2 · y2 under the condition that this is greater than M1 =
1

4
. To find

this expectation, we will have to calculate the probability density function (PDF) f
and cumulative distribution function (CDF) F of z = x · y, with x, y ∼ U(0, 1). We
get the latter by using its definition:

FZ(z) = P (Z ≤ z) =

1∫
x=0

P (y ≤ z

x
) · fX(x)dx =

1∫
x=0

dx +

1∫
x=z

z

x
dx = z − z · log z

Therefore, the PDF of z = x · y is given by f(z) = − log z, z ∈ (0, 1]

With these two functions, we can calculate both P (x2·y2 ≤M1) and E(x2·y2|x2·y2 >
M1). With M1 =

1

4
, we get

P (x2 · y2 ≤
1

4
) = F (

1

4
) =

1

4
− 1

4
· log(

1

4
) ≈ 0.59657

E(x2 · y2|x2 · y2 >
1

4
) =

1∫
1/4

x · f(x)

1− F (14)
=

1∫
1/4

− log(x) · xdx

3
4 + 1

4 · log(14)
=

0.19105...

0.40342...
≈ 0.47358

Finally, for M2 we receive

M2 = 0.59657 · 1

4
+ 0.40343 · 0.47358 ≈ 0.340197

50



This value will also be the base for the decision of each player in t = 3. The general
recursion for Mt, t > 1 can be evaluated as

Mt = P (xt · yt ≤Mt−1) ·Mt−1 + P (xt · yt > Mt−1) · E(xt · yt|xt · yt > Mt−1)

= F (Mt−1) ·Mt−1 + (1− F (Mt−1)) · E(xt · yt|xt · yt > Mt−1)
and with F (x) = x− x · log x this becomes

= (Mt−1−Mt−1·logMt−1)·Mt−1+(1−(Mt−1−Mt−1·logMt−1))·

1∫
Mt−1

− log z · z dz

1− (Mt−1 −Mt−1 · logMt−1)

= (Mt−1−Mt−1·logMt−1)·Mt−1+(1−(Mt−1−Mt−1·logMt−1))·
[
z2

4
− 1

2
z2 log z]1Mt−1

1− (Mt−1 −Mt−1 · logMt−1)

= ... = −
M2

t−1

4
+

1

2
M2

t−1 logMt−1 + Mt−1(Mt−1 −Mt−1 logMt−1) +
1

4
.

Similar to the simple one player model in Section 2, Mt should asymptotically equal
1 for t → ∞. We can easily see that this is the case: If we put in Mt−1 = 0 into
the expression, all parts of the expression equal 0, plus the constant 1

4 . If we enter
Mt−1 = 1, we get

Mt = −12

4
+

1

2
12 log 1 + 1(1− 1 · log 1) +

1

4
= −1

4
+ 0 + 1 +

1

4
= 1.

Now, given Mt ∈ (0, 1), the only thing left to show is that the expression is mono-
tonically increasing on (0, 1) by evaluating the derivative:

(−
M2

t−1

4
+

1

2
M2

t−1 logMt−1+Mt−1(Mt−1−Mt−1 logMt−1)+
1

4
)′ = Mt−1−Mt−1·logMt−1.

This is positive for 0 < Mt < e, which is more than enough for the interval (0, 1).

After we found the decision parameter for each of the players, all there’s left to
analyze is the decision making in the team. Because we work with simple majority
voting, at least two votes for launching will trigger the launch attempt, whereas at
least two votes for waiting will mean that no launch is made on this day. Let’s look
at three examples to illustrate how it works:

Table 5.2.1: Decision making, Team model, t = 2
x2 M1 y2,1 y2,2 y2,3 Vote 1 Vote 2 Vote 3 Overall

0.75 0.25 0.4 0.6 0.3 Yes Yes No Yes by 2-1

0.5 0.25 0.2 0.8 0.1 No Yes No No by 2-1

0.9 0.25 0.7 0.3 0.4 Yes Yes Yes Yes by 3-0
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Example 5.2. (Decision in Team model, examples for t = 2)
In the first row, there’s a 2-to-1 majority for a launch, as player 1 has a personal
success probability (PSP) of 0.75 · 0.4 = 0.3 > 0.25 and player 2 votes Yes due to
0.75 · 0.4 = 0.3 > 0.25, whereas player 3 votes No because 0.75 · 0.3 = 0.2375 < 0.25.
In the second row, we find two players voting against a launch attempt, as their
PSP is less than M1. In row 3, a large x2 leads to all players having a relatively low
threshold for their personal parameter, and all three vote for launching.

Finally, we will examine the recursion for Et: Let’s first go through the Vote result
probabilities step-by-step, starting with P (0 Yes), which is the probability for an
unanimous

”
No“ vote:

P (0 Yes) = P (xt ≤Mt−1)
+ P (xt · yt,1 < Mt−1 ∧ xt · yt,2 < Mt−1 ∧ xt · yt,3 < Mt−1 ∧ xt > Mt−1)

The first part represents the case in which the launch parameter xt is smaller than
the decision parameter Mt−1. Because the individual parameters of the players are
distributed in (0, 1), this automatically means that no player will vote for a start,
as xt ·yt,i < Mt−1. The second part denotes the case in which xt is sufficiently large,
but all three PSPs are smaller than Mt−1 anyway, resulting in 0 Yes votes.

P (0 Yes) = Mt−1 + P (yt,1 <
Mt−1

xt
∧ yt,2 <

Mt−1

xt
∧ yt,3 <

Mt−1

xt
∧ xt > Mt−1)

= Mt−1 + Fy(
Mt−1

xt
) · Fy(

Mt−1

xt
) · Fy(

Mt−1

xt
) · (1−Mt−1)

= Mt−1 + (
Mt−1

xt
)3 · (1−Mt−1), with xt ∼ U(m, 1).

This can be simulated by using Monte-Carlo algorithms. Same goes for P (1 Yes),
which can be calculated similarly - the factor 3 comes in due to any of the three
players giving the single Yes vote:

P (1 Yes) = 3 · (P (yt,1 >
Mt−1

xt
∧ yt,2 <

Mt−1

xt
∧ yt,3 <

Mt−1

xt
∧ xt > Mt−1)

= 3 · [(1− Fy(
Mt−1

xt
)) · Fy(

Mt−1

xt
) · Fy(

Mt−1

xt
) · (1−Mt−1)]

= 3 · [(1−
Mt−1

xt
) · (

Mt−1

xt
)2 · (1−Mt−1)], with xt ∼ U(m, 1).

Now we simply put together both results to receive the probability of a simple
majority vote for

”
no launch“ :

P (< 2 Yes) = P (0 Yes) + P (1 Yes) =
2(m4 −m3)

x3
+

3(m2 −m3)

x2
+ m

with m = Mt−1 and xt ∼ U(m, 1). As one might expect, this probability quickly
rises to 1 along with Mt, because it becomes infinitesimally unlikely that the players
agree to starting when all their thresholds for voting ’Yes’ are near 1.

The probability of a simple majority voting for the launch is then given by the

52



complementary probability

P (≥ 2 Yes) = 1− [P (0 Yes) + P (1 Yes)]

For the unanimous decision voting, it is useful to know P (3 Yes), which is

P (3 Yes) = P (yt,1 >
Mt−1

xt
∧ yt,2 >

Mt−1

xt
∧ yt,3 >

Mt−1

xt
∧ xt > Mt−1)

= (1− Fy(
Mt−1

xt
)) · (1− Fy(

Mt−1

xt
)) · (1− Fy(

Mt−1

xt
)) · (1−Mt−1)

= (1−
Mt−1

xt
)3 · (1−Mt−1), with xt ∼ U(m, 1).

We have now established the voting probabilities for both simple majority and unan-
imous voting. Now the question remains: How is Et calculated for t > 1. For Et,
which is the expected rate of regular mission successes (RMS), we get the following
formula:

Et = P (< 2 Yes) · Et−1 + P (≥ 2 Yes) · E(P (RMS)| ≥ 2 Yes votes)

If fewer than two players vote Yes, the day is skipped and therefore Et−1 is the
expected return. Now, if at least two players vote Yes, a launch attempt is made.
The return is the expected probability of at least a regular mission success under
the condition that two or more

”
Yes“ votes are casted by the players. We know that

P (RMS or TMS) equals

P (RMS) = xt · yt,1 · yt,2 · yt,3 + 3 · (xt · (1− yt,1) · yt,2 · yt,3).

It’s easy to see that P (RMS) → 1 for xt, yt,i → 1.
Previously, we found: Mt → 1 for t→∞.

For any chance at a simple majority vote for a launch it was necessary that xt >
Mt−1. This led us to the formula

P (≥ 2 Yes) = 1− [P (0 Yes) + P (1 Yes)] = 1− (
2(m4 −m3)

x3
+

3(m2 −m3)

x2
+ m)

with xt ∼ U(Mt−1, 1)→ 1 for t→∞.
Under the assumption that yt,i rise proportionally - which they should, as otherwise
the PSP would quickly become smaller than Mt−1 - we therefore get:

P (≥ 2 Yes votes, t)→ 0 for t→∞

This means that for rising t, a launch attempt becomes infinitesimally unlikely.
Same goes for the probability of a unanimous

”
Yes“ vote for a launch, which should

converge to 0 even quicker, as P (3 Yes) < P (≥ 2 Yes). For reference, let’s take a
look at some values of P (3 Yes) and P (≥ 2 Yes), approximated for a Monte-Carlo
parameter of 104: This can be found in Table 5.2.2 below.
Now, what is the conditional expectation of P (at least RMS)? This seems to be
difficult to calculate given that you have to first find the density/probability function
of it and then work in the condition, which in itself is at least very tricky to work
out.
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Table 5.2.2: Probability of majority Yes Vote in Team Model

t 2 5 10 100 1000

P (3 Yes) - unanimous 0.1548 0.0374 0.0121 0.0002 2 · 10−6

P (≥ 2 Yes) - simple majority 0.4203 0.1703 0.0816 0.0043 0.00015

What we can do is to find an upper bound for Et. As we already pointed out, the
probability of a Yes vote, no matter if by simple or unanimous majority, converges
to 0 for rising t. Now, what happens in the rare cases when indeed a majority votes
for a launch? The two (or three) players voting must feel extremely safe to take the
risk of launching, meaning that for large t, their mission part will almost surely be
successful, meaning that E(P(RMS)) should also converge to 1 for rising t. And this
is exactly the upper bound we were looking for:

ES
t ≤ P (< 2 Yes) · Et−1 + P (≥ 2 Yes) · 1

for simple majority voting and

EU
t ≤ P (< 3 Yes) · Et−1 + P (3 Yes) · 1

for unanimous voting. Below you can see a plot of both upper bounds.

Figure 5.2.1: Upper bound for EU
t (green) and ES

t (blue)
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As we can see, the upper bound of expected value of the team voting by simple
majority is way bigger than that of the unanimously-voting team. Looking at limits
for large t, it seems that ES

t does not quite reach 1. This seems suspicious, as one
would think that for large enough t, the team would always find a spot in which a
mission success is almost-surely guaranteed.

But looking at the upper bound of EU
t , we see that it doesn’t even seem to reach 0.6.

A assumed limit of 2 −
√

2getspassedforlargeenought. For t = 10000, the values
calculated with a Monte-Carlo parameter of mc = 104 are

ES
t ≈ 0.98854, EU

t ≈ 0.58381

For t = 105,mc = 103 it is

ES
t ≈ 0.98928, EU

t ≈ 0.58415

Why is the expectation of the unanimous team so low? The assumption is that it’s
due to the infinitesimally small P (3 Yes) for large t, which leads to the team letting
time tick down to a (comparably) very small t and then attempting a

”
panic-launch“

with a lower chance of success, whereas the team with the simple majority voting
starts more often for larger t and is more successful. As only two of three players
have to succeed in their mission for it to be an overall success, the mission will most
likely succeed when two players are almost-surely succeeding. If three players have
to vote unanimously, they probably stand in each other’s way more than they are
helping the team. Or as a German saying goes: Too many cooks spoil the broth!

A potential limit of EU
t could be 2−

√
2 ≈ 0.5878, but this is just speculation. It is

also unclear how sharp this upper bound actually is, as the. This is something that
can perhaps be determined in future research as well.
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5.3 SpaceX meets Judo - Three-Parameter-Model

The two things might not have anything in common at first glance, but the scoring in
the Japanese combat sport Judo during the 2016 Summer Olympics gave inspiration
for this model. For those not familiar with the sport, here is how the scoring works:6

Scoring in Judo (simplified)

• Ippon: If one of the judokas throws his opponent on his back ”with impetus
and control”, they score an ippon, and instantly win the contest.

• Waza-ari: If one of the judokas throws his opponent on his back with less
force than necessary for an ippon, they score a waza-ari (half-point). If one
judoka gets two waza-aris, they win the contest.

• Yuko: This is the small tiebreaker, given to a judoka who manages to throw
his opponent on his side. Yukos will be the tiebreaker in case both judokas are
tied in waza-aris.

• Shido: There are also penalties/infractions for minor offenses against the
rules, for example too passive behavior, or leaving the fighting area without
permission. If one of the judokas receives four shidos, he is disqualified and
his opponent wins the match. If at the end of the match both judokas are tied
in waza-aris and yukos, the one with less shidos (infractions) will be declared
winner.

If the judokas are tied in all four categories at the end of the fight, the ”Golden
Score” rule comes into effect. The match continues until the first contestant gets
any score and wins the match.

Table 5.3.1: Judo scoring examples
Player Ippon Waza-ari Yuko Shido Result

A 1 0 0 2 Winner by Ippon

B 0 1 3 1 Loser by Ippon

A 0 1 0 1 Winner by Waza-ari

B 0 0 2 0 Loser by Waza-ari

A 0 0 1 3 Loser by Shido

B 0 0 1 1 Winner by Shido

Example 5.3. (Three scoring scenarios)
In Example 1, judoka A is behind on all three smaller categories, but has managed
to score an ippon, winning the match. In Example two, judoka A wins because he
has achieved more waza-aris than his opponent. In Example 3, both judokas are
tied on actual fight scoring, with judoka B winning the match by receiving fewer
shidos than A.

6http://www.intjudo.eu/upload/2015_04/20/142952199282442702/2015_ijf_refereeing_

rules_english.pdf,
or http://www.nbcolympics.com/news/judo-101-rules-scoring
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Now we can build an analogous model with rocket launches. This can be done as a
single-player or two-player model, we will focus on the model with two contestants
in this thesis. First, we split the mission of the space organization in three distinct
parts: In real life, these could be rocket launch, satellite deployment and rocket
landing. Time is once again counting down from a fixed T ∈ N. All three parts have
independent success probabilities: xi, yi, zi ∼ U(0, 1). Now, the scoring will work as
follows:

• Ippon / Full mission success: All three parts of the mission succeed. Prob-
ability given by xi · yi · zi.

• Waza-ari / Deployment success: Launch and satellite deployment are
successful, but the landing fails. Probability given by xi · yi · (1− zi).

• Yuko / Launch success: The launch is successful, but the deployment of
the satellite goes wrong. The state of the landing will be irrelevant in this
case. Probability given by xi · (1− yi).

• Shido / Launch failure: If the launch fails, the organization will receive an
infraction. Probability given by (1− xi).

Now, the rules can be varied or be kept the same as in Judo:

• Number of full mission successes resulting in win: m (standard value 1).

• Number of deployment successes resulting in win: d (standard value 2).

• Number of launch failures resulting in disqualification: f (standard value 4).

• Later added: Number of launch successes resulting in win: s

The turn order is once again strictly alternating. We can vary between giving both
organization a fixed or infinite number of rockets/satellites. Looking at the number
of parameters we have to take into account for the recursion, we see that even
without a finite number of rockets and winning by having a full mission success,
there are already seven parameters in the expected points, as we see in the following
definition:

Definition 5.4. (Expected points in the Judo model)
Ei(d1, d2, s1, s2, f1, f2, t) gives the expected points for player i (i = 1, 2) when the
players have d1, d2 successful deployments, s1, s2 successful launches and f1, f2 failed
launches with t days left.

Note: A successful deployment does not influence s1 and s2. This definition assumes
that one full mission success is enough for a win. If it isn’t, there needs to be two
more parameters, m1 and m2 counting the number of mission successes by the two
players. If we gave the players a finite amount of rockets, there would be another
two parameters n1, n2 for the number of rockets they have left.

For the standard model, we can see that di ∈ {0, 1} and fi ∈ {0, 1, 2, 3}, because
higher values would lead to a win (di > 1) or a disqualification (fi > 3). The
number of successful launches si is not limited because simple launches are only
used as a tiebreaker in t = 0. Therefore si ∈ N, as well as obviously t ∈ N. In-
stead of using the golden score rule, we will give each player half a point if they are
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tied by all four categories. Now, let’s examine how a winner gets determined in t = 0:

E1(d1, d2, s1, s2, f1, f2, 0)

=


1 (d1 > d2) ∨ (d1 = d2 ∧ s1 > s2) ∨ (d1 = d2 ∧ s1 = s2 ∧ f1 < f2)
1

2
(d1 = d2) ∧ (s1 = s2) ∧ (f1 = f2)

0 else

E1(...) will also become 1 for d1 = d and 0 for f1 = f . We can also examine the
decision making for player 1 in t ∈ N :
E1(d1, d2, s1, s2, f1, f2, t)

=



1 (1) full mission success

1− E2(d1 + 1, d2, s1, s2, f1, f2, t− 1) (2) deployment success, landing failure

1− E2(d1, d2, s1 + 1, s2, f1, f2, t− 1) (3) launch success, deployment failure

1− E2(d1, d2, s1, s2, f1 + 1, f2, t− 1) (4) launch failure

1− E2(d1, d2, s1, s2, f1, f2, t− 1) (5) no launch attempt

Similar to all other models, all of these cases happen with a certain probability,
with the expected payouts sorted (1) ≥ (2) ≥ (3) ≥ (5) ≥ (4). The player sees the
daily parameters (xt, yt, zt) and decides between the ’fixed’ expected points for not
launching (5) and

LV := (1) · (xtytzt) + (2) · (xtyt(1− zt)) + (3) · (xt(1− yt)) + (4) · (1− xt).

The payout for (2) will be 1 if d1 = d − 1, because another successful launch and
deployment results in a win. Payout for (4) can be 0 if f1 = f − 1, with the fth
launch failure leading to a disqualification/loss. Figuring out the distribution of LV
would yield an even more complicated formula than in Section 5.1, therefore we will
once again use a Monte-Carlo algorithm to determine an approximated value for LV
in each situation. This will be compared to the

”
waiting value “1−E2(..., t− 1) and

the expected value can then be calculated as in the other models:

E1(..., t) = P (LV < WV ) ·WV + (1− P (LV < WV )) · E(LV |LV ≥WV )

. Coming to the programming of the recursion, an unlimited and thus potentially
infinite si is really not feasible. Therefore, one had to find a way to limit si without
influencing the model too much. The program calculates towards any given maxi-
mum T , and for t = T, si does not have to exceed {0, 1, ..., T + 1}. In this case, all
potential

”
Yuko advantages“, (more successful launches), are depicted, in addition

to a T+1-to-0 lead, which can not be caught up to in T periods.
Because the recursions count si upwards while t goes down, the needed interval for
si becomes larger as t decreases. To be able to evaluate the desired interval in t = T ,
the interval in t = 0 has to be si ∈ {0, 1, ...2T + 1}. Even this restriction becomes
problematic for larger t, as the programs runtime is increasing substantially. The
volume of the matrix used for the recursions has the volume

V (E) = 2 · 2 · 2 · (2T + 2) · (2T + 2) · 4 · 4 · (T + 1) = 512T 3 + 1536T 2 + 1536T + 512

which already exceeds 600,000 for T = 10. A recursion with a runtime of O(t3)
is really not desirable. Thus, it was decided to add another rule to the model: s
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successful launches resulting in a win, with s > d. If, for example, s is limited to
10, the volume of the matrix is reduced to

V (E) = 2 · 2 · 2 · 10 · 10 · 4 · 4 · (T + 1) = 12800T + 12800

which is linear and therefore can be calculated faster. And even with this, the
calculation on a standard PC with mc = 10.000, s = 10 takes about 35 minutes per
t. With mc = 1000, the calculation up to t = 100 took a little under six hours. The
programs RocketJudo and JudoMC used for examining the recursions can be found
on the CD as well. Here are a few results:

Table 5.3.2: Judo model, E1 with d1, d2, f1, f2 = 0 and t = 100

s1

s2 0 1 2 3 4 5 6 7 8 9

0 0.537 0.541 0.537 0.542 0.535 0.535 0.526 0.508 0.448 0.300

1 0.540 0.538 0.540 0.540 0.534 0.536 0.524 0.506 0.445 0.297

2 0.532 0.536 0.533 0.538 0.539 0.536 0.525 0.504 0.443 0.300

3 0.540 0.541 0.535 0.537 0.546 0.535 0.528 0.506 0.454 0.297

4 0.543 0.534 0.538 0.536 0.542 0.540 0.535 0.511 0.448 0.304

5 0.540 0.541 0.540 0.539 0.543 0.540 0.532 0.510 0.454 0.302

6 0.551 0.546 0.550 0.546 0.554 0.546 0.541 0.514 0.452 0.295

7 0.580 0.571 0.575 0.574 0.574 0.573 0.567 0.550 0.486 0.308

8 0.642 0.646 0.640 0.651 0.647 0.650 0.642 0.630 0.552 0.384

9 0.811 0.814 0.811 0.813 0.814 0.806 0.807 0.800 0.777 0.629

Table 5.3.3: Judo model, E1 with d1, d2, s1, s2 = 0 and t = 100

f1

f2 0 1 2 3

0 0.537 0.563 0.596 0.686

1 0.514 0.53 0.569 0.672

2 0.471 0.485 0.525 0.625

3 0.360 0.373 0.412 0.507

Table 5.3.4: Judo model, E1 with d1, d2 = 0, s1, s2 = 9 and t = 100

f1

f2 0 1 2 3

0 0.629 0.631 0.64 0.705

1 0.610 0.612 0.630 0.705

2 0.577 0.575 0.604 0.668

3 0.473 0.458 0.496 0.558

It’s clear that Ei(d1, d2, s1, s2, f1, f2, t) should be at least
1

8
, as this is the expected

probability of a full mission success for any given xt, yt, zt - this is comparable to
winning three fair coin-flips in a row. In t = 1, there a many scenarios in which the
active player is in the lead, and his expectation is 1 as he won’t launch a rocket and
lets time run out.
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6 Two-Player Models with Non-Trivial Turn Orders

After examining SpaceX and Judo models, we now return to more ”basic” models
of rocket launching. So far, we have only looked at models where there is a strictly
alternating turn order between multi players. For this section, we will go a step
further and look at other possible turn orders to see if they have a notable effect on
the players’ chances.
There is also another way of tweaking the model besides altering the turn order:
Models with non-deterministic time have been examined by Döring (2015), e.g.
models where time does not count down in simple steps of 1, but randomly in larger
or smaller steps (two day or one day with probability of 50% each, for example).
This type of model might be considered for further research, but isn’t examined in
this thesis.

6.1 Random Order

We start by looking at a two-player model similar to the one described in Section
4. These two players are once again competing against each other, with a player
winning the game by either launching his rocket successfully, or his opponent de-
stroying his own rocket. The winner will receive 1 point, the loser 0 points. If the
time, which counts down from a certain T > 0, runs out without a successful launch
by either player, both of them lose and receive no points. The ’daily value’ xi is
once again uniformly distributed on (0, 1).

In Section 4, the turn order was strictly alternating. Now, before each new day,
a coin-flip decides whether Player 1 or Player 2 get the launch opportunity for
that given day. Let p ∈ (0, 1) be the probability of Player 1 getting the launch
opportunity for that day, therefore 1−p will be Player 2 probability of receiving the
launch opportunity.
With each player only having one rocket, both of them have only got one attempt
at launching - if it fails, they lose. We define Ed(t) as the expectation of the active
player d with t days left. Similarly to Section 4, for t = 1 and t = 2 it is clear that

E1(1) = E2(1) =
1

2
, E1(2) = E2(2) =

5

8

The value for t = 2 can be seen by looking at the decision tree for any of the two
players: As we can see in Figure 6.1.1, the player will have a expectation of half a
point on the last day, regardless of the parameter p because both players have to
launch on the final day and have a 50-50 chance of success. Therefore, both players
expectation on the penultimate day is 5

8 as in Section 4.
For t > 2, we see the influence of the parameter p.
The decision parameters (see Definition 4.2) for the players are given by

s1(t) = p · E1(t− 1) + (1− p) · (1− E2(t− 1))

s2(t) = p · (1− E1(t− 1)) + (1− p) · E2(t− 1)

Out of these, we can now calculate the expected points

E1(t) = s1(t) · s1(t) + (1− s1(t)) ·
1 + s1(t)

2
=

1

2
+

s1(t)
2

2
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Figure 6.1.1: Decision tree, random-order, 1-vs-1, t = 2

1) E1(t)
2) E2(t)

1) 1− E2(t− 1)
2) E2(t− 1)

Player 2 gets turn (1-p)

1) E1(t− 1)
2) 1− E1(t− 1)Player 1

gets turn
(p)No launch

0
Failure

1
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Figure 6.1.2: Decision tree for model with random launching right

E2(t) = s2(t) · s2(t) + (1− s2(t)) ·
1 + s2(t)

2
=

1

2
+

s2(t)
2

2

One can already notice a certain symmetry, which can also be found in the results,
as E1(t, p) = E2(t, 1 − p) for large t. The recursion was programmed in Scilab
(RocketRandomOrder) and tested for various p. Here are a few of the results found:

Table 6.1.1: Expectation for large t, random order, single rocket
p E1 (decimal) E2 (decimal) E1 E2

0 0.5 1 1/2 1
1/10 0.53125 0.78125 17/32 25/32
1/5 0.55556 0.72222 10/18 13/18

1/4 0.56699 0.70096 1−
√

3/4 2− 3
4

√
3

1/3 0.58786 0.67157 2−
√

2 7/2− 2
√

2

2/5 0.60102 0.65153 11/2 - 2
√

6 8− 3
√

6
1/2 0.625 0.625 5/8 5/8

Now, some of those values represented simple fractions. 0.58786 was identified as
2−
√

2 quickly as well. The other values were identified by using WolframAlpha.

These findings point to the assumption, that for rational p =
a

a + b
, a, b ∈ N the
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expected value of E1 for large t has the form x + y ·
√
z, with all three variables

depending on p. With a bit of trial and error, all three values were identified:

Theorem 6.1. For the launch model with two players having one rocket each and

random order given by a rational parameter p =
a

a + b
∈ (0, 1), the expected value of

player 1 for large t is given by

E1(t) = x− y ·
√
z,

with

x =
2a2 + b2 − ab

2 · (a− b)2
, y =

a

(a− b)2
, z = a · b,with a 6= b

Proof.
Similar to other proofs, we assume convergence and prove that the presented value is
the correct one. Assuming convergence, E1(t) should asymptotically equal E1(t−1)
as well. Therefore, we will just speak of E1 (and E2) here.

E1 =
1 + ( a

a+bE1 + b
a+b(1− E2))

2

2

⇔ E∗1 =
a2 + ab + b2 + abE2 ±

√
b(a + b)2(2aE2 + b)

a2

E2 =
1 + ( a

a+b(1− E1) + b
a+bE2))

2

2

⇔ E∗2 =
a2 + ab + b2 + abE1 ±

√
a(a + b)2(2bE1 + a)

b2
The solutions with −√... are the important ones: Putting E∗2 into E∗1 and solving
for E∗1 , we receive:

E1 =
±2a3/2

√
b + 2a2 − ab + b2

2(a2 − 2ab + b2)
=

2a2 − ab + b2

2(a− b)2
− a

(a− b)2

√
ab for a 6= b

.
This can analogously be done to receive E2, which behaves symmetrical to E1.

Note: This can also be done for any p ∈ (0, 1), yielding E1(p) =
1− 3p + 4p2 − 2

√
p3 − p4

2− 8p + 8p2

for p ∈ (0, 1). Because the recursion was mostly tested for rational p, the focus
of the above theorem lies on this. A plot of E1(p) and E2(p) can be found in the
appendix to this chapter.
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6.2 Snake Order

Definition 6.2. (Snake order)
A snake order for N players means that in the first round, player 1 has his turn first,
then player 2, ..., until player N . In the next round, player N goes first, followed by
player N −1, N −2,..., and finishing with player 1, after which the order is reversed
again for the next round.

Example 6.3. (Snake order for 2 players)
Let’s assume the game starts in t = T , counts down and player 1 has the first turn.

Time left T T-1 T-2 T-3 T-4 T-5 T-6 ...

Player 1 2 2 1 1 2 2 ...

By the example above, we see that for large T and two players, this essentially
means that each player always has two subsequent days to launch his rocket. For
this model, we will give player 1 n1 and player 2 n2 rockets, and force them to launch
attempts by declaring them both losers if time runs out - similar to the Scenario 3
in the Rich-vs.-Poor model, laid out in Section 4.3. If one player runs out of rockets,
the other player will also get all remaining days to try a successful launch. We define
the following notation for expected value and decision parameters:

Definition 6.4. (Expected points/Decision parameters, Snake Order)
Ed(n1, n2, p, t) denotes the expected points of (active) player d, with player 1 and 2
having n1 and n2 remaining rockets, player p being the next active player and t days
remaining. sd(n1, n2, p, t) denotes the corresponding decision parameter.

First, for t = 1 we get E1(n1, k, p, 1) = E2(k, n2, p, 1) =
1

2
for all n1, n2 ≥ 1, k ≥ 0.

Due to the rules, it does not matter whether the passive player has any rockets left,
and in t = 1, the next player is also irrelevant.

For t = 2, we need to examine two different situations:

Active player has launch right for t = 1:

E1(n1, k, 1, 2) = E2(k, n2, 2, 2) =


1− (

1

2
)2 =

3

4
for ni > 1

5

8
for ni = 1

When a player has more than one rocket, he will launch two of them in the final two
days. Otherwise, he receives the same expectation E2 as in the single-player model
outlined in Section 2.

Passive player has launch right for t = 1: E1,2(n1, n2, 2, 2) =
1

2
for ni > 1

The active player has no incentive to wait, he launches a rocket with any x2.

Now, we take a look at scenarios in which one player has no rocket left:

E1(1, 0, 1, t) =
1 + E1(1, 0, 1, t− 1)2

2
, E2(0, 1, 2, t) =

1 + E2(0, 1, 2, t− 1)2

2

E1(n1, 0, 1, t) =
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
, n1 > 1, with
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En = E1(n1, 0, 1, t− 1), En−1 = E1(n1 − 1, 0, 1, t− 1)

E2(0, n2, 2, t) =
E2

n · En−1 + E2
n − 2EnEn−1 + En−1 + 1

2
, n2 > 1, with

En = E2(0, n2, 2, t− 1), En−1 = E2(0, n2 − 1, 2, t− 1)

This is an analogous result already discussed in Section 4.3. Next up, the situations
in which one of the players has a single rocket left:

Active player with single rocket, active player has next turn:

E1(1, n2, 1, t) = E1(1, n2, 2, t− 1)2 + (1− E1(1, n2, 2, t− 1)) · 1+E1(1,n2,2,t−1)
2

=
1 + E1(1, n2, 2, t− 1)2

2
, analogous result for E2(n1, 1, 2, t− 1).

Active player with single rocket, passive player has next turn:

E1(1, n2, 2, t) = (1− E2(1, n2, 2, t− 1)2 + (1− (1− E2(1, n2, 2, t− 1)) · 1+(1−E2(1,n2,2,t−1))
2

=
1 + (1− E2(1, n2, 2, t− 1))2

2
, analogous result for E2(n1, 1, 1, t− 1).

Passive player with single rocket, active player has next turn:

E1(n1, 1, 1, t)
E1(n1, 1, 2, t)

E1(n1, 1, 2, t− 1)
1− E2(n1, 1, 2, t− 1)

No launch

E1(n1 − 1, 1, 2, t− 1)
1− E2(n1 − 1, 1, 2, t− 1)

Failure

1
Succes

s

Launc
h

Figure 6.2.1: Decision tree, snake-order model, passive player with single rocket

Before this, all decision parameter were equal to the expected value of not launching.
Now, we have to calculate them specifically:

s1(n1, 1, 1, t) · 1 · (1− s1(n1, 1, 1, t)) · E1(n1 − 1, 1, 2, t− 1) = E1(n1, 1, 2, t− 1)

⇔ s1(n1, 1, 1, t) =
E1(n1 − 1, 1, 2, t− 1)− E1(n1, 1, 2, t− 1)

E1(n1 − 1, 1, 2, t− 1)− 1
=: s1

E1(n1, 1, 1, t) = s1 · E1(n1, 1, 2, t− 1)

+(1− s1) · [
1 + s1

2
· 1 + (1−

1 + s1

2
) · E1(n1 − 1, 1, 2, t− 1)]

Passive player with single rocket, passive player has next turn:

s1(n1, 1, 2, t) · 1 · (1− s1(n1, 1, 1, t)) · (1−E2(n1− 1, 1, 2, t− 1) = 1−E2(n1, 1, 2, t− 1)
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⇔ s1(n1, 1, 2, t) =
E2(n1 − 1, 1, 2, t− 1)− E2(n1, 1, 2, t− 1)

E2(n1 − 1, 1, 2, t− 1)
=: s2

E1(n1, 1, 2, t) = s2 · (1− E2(n1, 1, 2, t− 1)

+ (1− s2) · [
1 + s2

2
+ (1−

1 + s2

2
) · (1− E2(n1 − 1, 1, 2, t− 1)

The calculation for E2(1, n2, 1, t) and E2(1, n2, 2, t) is similar and left as an exercise.
Finally, we look at the case in which both players have more than one rocket:

E1(n1, n2, 1, t)
E1(n1, n2, 2, t)

E1(n1, n2, 2, t− 1)
1− E2(n1, n2, 2, t− 1)

No launch

E1(n1 − 1, n2, 2, t− 1)
1− E2(n1 − 1, n2, 2, t− 1)

Failure

1
Succes

s

Launc
h

Figure 6.2.2: Decision tree, snake-order model, both players with > 1 rocket

s1(n1, n2, 1, t) · 1 · (1− s1(n1, n2, 1, t)) · E1(n1 − 1, n2, 2, t− 1) = E1(n1, n2, 2, t− 1)

⇔ s1(n1, n2, 1, t) =
E1(n1 − 1, n2, 2, t− 1)− E1(n1, n2, 2, t− 1)

E1(n1 − 1, n2, 2, t− 1)− 1
=: s3

E1(n1, n2, 1, t) = s3 · E1(n1, n2, 2, t− 1)

+(1− s3) ·
1 + s3

2
· 1 + (1−

1 + s3

2
) · E1(n1 − 1, n2, 2, t− 1)

s1(n1, n2, 2, t)·1·(1−s1(n1, n2, 1, t))·(1−E2(n1−1, n2, 2, t−1) = 1−E2(n1, n2, 2, t−1)

⇔ s1(n1, n2, 2, t) =
E2(n1 − 1, n2, 2, t− 1)− E2(n1, n2, 2, t− 1)

E2(n1 − 1, n2, 2, t− 1)
=: s4

E1(n1, n2, 2, t) = s4 · (1− E2(n1, n2, 2, t− 1)

+ (1− s4) · [
1 + s4

2
+ (1−

1 + s4

2
) · (1− E2(n1 − 1, n2, 2, t− 1)

Now we have all relevant recursion formulas. These were coded into RocketSnake,
and results were evaluated.

Theorem 6.5. (Results - Snake-Order Model)
1) lim

t→∞
E1(1, 1, 1, t) ≈ 0.6562805 2) lim

t→∞
E1(1, 1, 2, t) ≈ 0.5590715

3) lim
n1=t→∞

E1(n1, 1, 1, t) ≈ 0.8421738 4) lim
n1=t→∞

E1(n1, 1, 2, t) ≈ 0.6843476

5) lim
n2=t→∞

E1(1, n2, 2, t) ≈ 0.5124546 6) lim
n2=t→∞

E1(1, n2, 1, t) ≈ 0.6313048

7) lim
t→∞

E1(n1 = n2 = t, p = 1) =
4

5
8) lim

t→∞
E1(n1 = n2 = t, p = 2) =

3

5
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Proof.

1) E1(1,1,1, t) =
1 + E1(1, 1, 2, t− 1)2

2
, E1(1, 1, 2, t−1) =

1 + (1− E2(1, 1, 2, t− 2))2

2
,

E2(1, 1, 2, t−2) =
1 + E2(1, 1, 1, t− 3)2

2
, E2(1, 1, 1, t−3) =

1 + (1−E1(1,1,1, t− 4))2

2
.

Assuming convergence, we put all four terms into each other and receive this big
equation of degree 16:

x16

215
− x15

211
+

x14

28
− 21x13

210
+

5x12

26
− 29x11

27
+

131x10

28
− 29x9

32
+

321x8

256
− 43x7

32
+

9x6

8
−

13x5

16
+

5x4

8
− x3

2
+

x2

4
+

5

8
= x with x = E1(1, 1, 1, t).

This equation has 16 solutions, of which two are real, and one is approx. 0.6562805.

2) E1(1, 1, 1, t) =
1 + E1(1, 1, 2, t)

2

2
, and with E1(1, 1, 1, t) = 0.6562805 for large t,

we receive E1(1, 1, 2, t) ≈ 0.5590715.

3) Player 1 has enough rockets for always launching, therefore his recursion formula
is more simple:

E1(n1,1,1, t) =
1 + E1(n1 − 1, 1, 2, t− 1)

2
,

E1(n1 − 1, 1, 2, t− 1) =
1 + (1− E2(n1 − 2, 1, 2, t− 2))

2

E2(n1 − 2, 1, 2, t− 2) =
1 + E2(n1 − 2, 1, 1, t− 3)2

2
,

E2(n1 − 2, 1, 1, t− 3) =
1 + (1−E1(n1 − 2,1,1, t− 4))2

2
.

We end up with an equation of degree 4: x4 − 4x3 + 8x2 + 24x − 24 = 0, which is
solved by x ≈ 0.8421738.

4) E1(n1, 1, 1, t) =
1 + E1(n1 − 1, 1, 2, t− 1)

2
, with E1(n1, 1, 1, t) ≈ 0.8421738

we receive E1(n1, 1, 2, t) ≈ 0.684348 for large t.

5) E1(1, n2, 2, t) =
1 + (1− E2(1, n2, 2, t− 1))

2
≈

1 + (1− 0.8421738)2

2
= 0.5124546

6) E1(1, n2, 1, t) =
1 + E1(1, n2, 2, t− 1)2

2
≈

1 + (0.5124546)2

2
= 0.6313048

7) When both players have enough rockets to always launch, Player 1 goes first and
he has the next turn as well, his chances of winning are:
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E =
1

2
+

1

4
+

1

32
+

1

64
+

1

512
+

1

1024
+ ...

=
3

4
+

3

64
+

3

1024
+ ... | divide by 16

⇔ 1

16
E =

3

64
+

3

1024
+ ...

⇒ 15

16
E =

3

4
⇔ E =

4

5
.

8) If player 1 only has the first turn, and then fourth/fifth,..., his chances are:

E =
1

2
+

1

16
+

1

32
+

1

256
+

1

512
+

1

4096
+ ...

=
9

16
+

9

256
+

9

4096
+ ... | divide by 16

⇔ 1

16
E =

9

256
+

9

4096
+ ...

⇒ 15

16
E =

9

16
⇔ E =

3

5
.

If we compare this to the results of the base scenario in Section 4.1/4.3, we see that

”
Rich“ has an even bigger advantage over Poor when he is active and also has the

next turn, whereas when he is active with the next two launch opportunities going
to Poor, his expectation is decreased:

lim
n1=t→∞

E1(n1, 1, 1, t) ≈ 0.8421738 >
√

3− 1 > 0.6843476 ≈ lim
n1=t→∞

E1(n1, 1, 2, t)

The analogous result can be found for Poor as well:

lim
n2=t→∞

E1(1, n2, 2, t) ≈ 0.5124546 < 4− 2
√

3 < 0.6313048 ≈ lim
n2=t→∞

E1(1, n2, 1, t)

And for the situation in which both players always launch:

lim
t→∞

E1(n1 = n2 = t, p = 1) =
4

5
>

2

3
>

3

5
= lim

t→∞
E1(n1 = n2 = t, p = 2)

For a large number of players, their decision-making becomes more simple. As they
are unlikely to have another attempt at launching, they will asymptotically launch
as soon as it’s their turn. For N players, the player first to act has a a winning

chance of
1

2
, the second player has a chance of

1

4
and the i-th player a chance of

1

2i
.

This was found in one of Prof. Althöfer’s lectures for standard order, and applies
here as well if the number of player is large enough.
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7 Conclusions and Open Questions

We have now examined various different models, all more or less based on rocket
launches. Let’s summarize the results:

Section 2: In the simplest version of rocket launch models, which was also the one
most comparable to the Classic Secretary Problem, we found that for rising t, Et

quickly converges to 1 for a single player.

Section 3: In the n-k-t model, we found that the recursion had numerical problems
due to rounding inaccuracies and subsequent division by 0. We also gathered some
results, namely that any player that doesn’t have to launch all his rockets, needs
significantly less time to have a large chance at succeeding in his mission. If he has
to launch them all and has only little time buffer to do so, his chances are only slim.

Section 4: In this Rich-Vs-Poor-model, we used three variants to alter potential
results of a base scenario. In this base scenario, we found that the rich player has
a significant advantage when he is the active player (winning chance around 73%)
whereas the poor player does not have much more than hope to get lucky (53% as
the active player).
Of the three rule variants, only the lucky-loser rule with parameter p had a lasting
influence on the limits for both Rich and Poor. Although we assumed that any
p > 0 would make the game fairer, we saw that this wasn’t the case, depending on

how advantages were defined. Indeed, Poor had his minimum expectation of
1
√

5

for p =
8

5
− 2
√

5
, only increasing it towards a fair game in p = 1 for larger p. The

other two rule variants sadly didn’t have notable effects.

Section 5: In the simple SpaceX model, we noted that the player has a very long way
towards a high win rate if a, the reward for just launching, is small. For a nearing 1,
the model converges with the one described in Section 2, where the convergence to
an almost-surely success is much quicker. In the team model (Section 5.2), we found
strong indications that simple majority voting is superior to unanimous voting, if
only a simple majority of successful launches is needed.

Section 6: In the final two models, we altered the turn order to see if id had any
effect on the expected outcome of the games. With random order, the first player’s
expectation increases pretty much linear up until p = 0.8 and quickly moves up to
1 for p = 1 afterwards (see Figure A.3.1 for reference), at least in a scenario where
both players had a single rocket. Finally, in the snake-order model, we found that
the player with more rockets had an even bigger advantage when having two turns
in a row compared to the Rich-Vs-Poor model, but had a decreased expectation
when having only one launch attempt before Poor.

Open questions and potential fields of future research:

Due to the potential variety of these models, this thesis only gives a small glimpse
of what can be researched. In most models presented in this thesis, independent,
uniformly distributed random numbers were used to describe the probability of
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successful launches. By opening up this restriction, e.g. using non-independent
variables that are not necessarily distributed in U(0, 1), a whole new landscape of
models becomes viable. These models might also reflect reality a lot closer - as for
example weather on a particular day usually has a non-zero correlation with the
weather on the day before. In two-player models, we could also give both players
different distributions. Now to some more section-specific topics:

In Section 3: Finding a model that is close to the one presented in the section,
but has no numerical problem due to a division by 0 in some cases. This might be
achieved by somehow limiting the cases to

”
interesting“ ones, e.g. cases in which it

is not instantly clear if the expected success rate is close to 0 or 1.

In Section 4: The consolation rule didn’t really affect the long-run results of Rich
and Poor. Here, a model in which the two players are working together could be an
interesting focus for future research - in this, the consolation could be more of effect
here, when both players see no realistic chance of launching and rather share the
consolation c. Finding other rules other than the three documented in this thesis
might also be worthy of consideration.

In Section 5: In all three models presented in this section, we used Monte-Carlo al-
gorithms to determine approximate results. For quantitative examination, this was
deemed enough - but for proof of potential results, exact results would be even more
useful. In the simple SpaceX model, finding the density and probability function
of LV can be done by splitting it into two independent factors. In the other two
models, the calculation of exact conditional expectations seems a lot more complex.
Finding other models based on scoring in certain sports might be a potentially
inspiring task as well. A short description of a model based on basketball (and not
necessarily on rocket launches) came to mind just before completion of this thesis
and can be found in the appendix of Section 5.

In Section 6: It could be of potential interest to combine the Rich-vs.-Poor-model
with random order, to examine possible effects on Rich’s advantage over Poor.
Depending how p is chosen, this could similar to snake order make the game fairer
or increase Rich’s advantage even further.

Overall, we have explored part of the rocket launch model landscape, and found
both expected and surprising results. It seems like there could be even more to
discover, as this was just a small part of possible games/models based on launching
rockets. It is not quite clear if some of these results have an application to the real
world yet, or if the models have to get more

”
realistic“ and complex to provide a

larger amount of realism. This should be determined in future works.
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A Appendix

A.1 Appendix to Chapter 4

A.1.1 Proof of Theorem 4.5

First we show that E2(n1, 1, t) is minimal in p =
8

5
− 2
√

5
and equals

1
√

5
. After

that, it is easy to show that E1(n1, 1, t) equals
3

5
in this point.

The relevant recursion formula is found in Theorem 4.4:

E2(n1, 1, t) = s2 · (1− E1(n1, 1, t− 1)) + (1− s2) · [(1−
p

2
) ·

1 + s2

2
]

and s2 =
1− E1(n1, 1, t− 1)

1− p/2
Assuming convergence, we can equal
E1(n1, 1, t− 1) = E1(n1 − 1, 1, t− 1) = E1(n1, 1, t) = E1 for large n1 and t and
E2(n1, 1, t− 1) = E2(n1 − 1, 1, t− 1) = E2(n1, 1, t) = E2 for large n1 and t.

For reference, we also take a look at the decision tree for Rich again: See Figure
4.2.3 on page 27.

Rich will always launch, and therefore E1 =
1

2
· (1−

p

2
+ 1− E2) = 1−

E2

2
−

p

4
.

For E2, we use the formula of Theorem 4.4:

E2 =
1− E1

1− p/2
· (1− E1) + (1−

1− E1

1− p/2
) · [(1− p/2) · 1

2
· (1 +

1− E1

1− p/2
)]

=
(1− E1)

2

1− p/2
+

2 · E1 − p

2− p
· [(1− p/2) · (

E1 − 1

p− 2
+

1

2
)]

=
p2 − 4p + 4 · E2

1 − 8 · E1 + 8

8− 4p

and with E1 = 1−
E2

2
−

p

4
this becomes

E2 = −
5p2 + 4 · p · E2 − 16p + 4 · E2

2 + 16

32p− 4

This quadratic equation has two solutions:

E2 =
1

2
(± 2

√
5p2 − 16p + 12− 5p + 8)

with
1

2
(−2

√
5p2 − 16p + 12 − 5p + 8) =: f(p) giving the limit of Poor’s expected

points for a given p.

The derivative equals f ′(p) =
1

2

(
−

2(5p− 8)√
5p2 − 16p + 12

− 5
)
,

which equals 0 for p =
8

5
− 2
√

5
.
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Therefore, we have identified the p in which E2 is minimal.

The value of E2 is f(
8

5
− 2
√

5
) =

1
√

5
, as stated in the Theorem.

Finally, E1 is given by E1 = 1−
E2

2
−

p

4
= 1− 2

5
+

1

2
√

5
− 2

4
√

5
=

3

5
.

A.1.2 E1(p), E2(p), RA(p), AA(p) with relevant points
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Figure A.1.1: Rich vs. Poor, Scenario 2, E1,2 and advantages

A.2 Appendix to Chapter 5

Idea for a Basketball model:
- Two players
- Time ticking down from T to 0
- Players take turns in their throws
- Two random numbers xt, yt for each turn
- The larger value gives success rate of 2-point-throw
- The smaller value gives success rate of 3-point-throw
- Each player decides if he goes for two or three points in his turn
- Player with most points in t = 0 wins the game.
- Ed(p1, p2, t) expected win rate of player d when players have p1, p2 points and t
periods left.
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A.3 Appendix to Chapter 6

E1(p), E2(p) in the random-order model with one rocket each

Figure A.3.1: Random-order model, E1,2

A.4 CD with additional content

A CD with additional content is attached to the physical copy of this thesis. On this
CD, one can find all the source codes for the programs used in this thesis, the two
non pgf/tikz-pictures (Figures 5.2.1 and A.3.1, to be exact) , and additional results
of both Rich vs. Poor and Judo model - and a PDF version of this paper.
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Most of the models are based on Prof. Althöfer’s and my own ideas. Here are the
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http://wolframalpha.com

• For SpaceX-related information: http://spacex.com/

• Judo rules: http://www.intjudo.eu/upload/2015_04/20/142952199282442702/
2015_ijf_refereeing_rules_english.pdf This was apparently deleted
some time after October 1st. Another summary can be found at
http://www.nbcolympics.com/news/judo-101-rules-scoring.
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German Summary

Die vorliegende Arbeit wirft einen Blick auf eine neue Art von Sekretärinnenproblem
bzw. Auswahlproblemen, basierend auf Raketenstarts. In Kapitel 2 wird zunächst
das klassische Sekretärinnenproblem dargelegt und anschließend ein sehr ähnliches
Ein-Spieler-Modell mit Raketenstarts präsentiert.

In Kapitel 3 findet sich ein weiteres Ein-Spieler-Modell, bei dem das Starten mehrerer
Raketen in einem gegebenen Zeitfenster untersucht wird - hierbei kommt es allerd-
ings zu numerischen Problemen. Anschließend befasst sich Kapitel 4 mit einem
Zwei-Spieler-Modell, bei dem die beiden Spieler eine unterschiedliche Zahl von
Raketen vorweisen, das sog.

”
Reich-Gegen-Arm-Modell“. Hier wird das Basis-

szenario außerdem durch drei Regeln variiert, und Effekte dieser Regeländerungen
untersucht.

Abschnitt 5.1 ist inspiriert von den technischen Innovationen von SpaceX und
bezieht neben Raketenstarts auch -landungen mittels eines zweiten Parameters ein.
In Abschnitt 5.2 wird dann ein Team-Modell untersucht, bei dem drei Spieler eine
gemeinsame Rakete starten wollen, um individuelle Missionen zu erfüllen, wobei
sich herausstellt, dass eine einfach Mehrheit bei der Abstimmung bessere Resultate
zu erzielen scheint als eine einstimmige. Anschließend wird noch ein Modell mit
drei Parametern vorgestellt, dessen Idee auf dem Scoringverfahren im Kampfsport
Judo basiert.

Im letzten Kapitel wird abschließend untersucht, welche Effekte eine Änderung der
Zugreihenfolge weg von strikt abwechselnder Reihenfolge hat. In Abschnitt 6.1.
wird die Zugreihenfolge randomisiert, und im Abschnitt 6.2 durch eine sogenannte

”
Snake-Order“ ersetzt.
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