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Launch Scenario:    13  days,  one slot per day



 November 15, 1988:    Soviet Space Glider Buran

Was it the last chance for a launch ?



Secretary Problem
 



Launch as a Secretary Problem



A  Basic  Stochastic  Model

  Only one rocket available.

N possible launch days;  
Launch Director  knows number N in advance.

Each day i has some chance x(i) of success; 
0.00  <  x(i)  <  1.00

x(i) = 0.00 = sure failure;        x(i) = 1.00 = sure success

His/her decision: launch on day i or no launch ?



(1)  x(i) becomes known only directly ahead of date i.

(2)  The x(i) are random numbers, 
       independent of each other,  identically distributed. 

(3)  Very special: The x(i) are uniformly distributed 
                              in the interval [0,1]. 

(4)  The Director wants to maximize the probability 
                  of a successful launch.

(5)  The launch attempt has to take place on one 
       of the days. No postponement to other years allowed. 



Example with Numbers



OPTIMAL  STATIC  STRATEGY

Threshold T:    Launch on current day,   if x(  ) > T .

Optimal  threshold  is   T  =  1 –  log(N) / N ;

        leads  to  success  rate  of  about 1 –  log(N) / 2N.



DYNAMIC  STRATEGY

Make threshold   T = T(i)   dependent on the day  i  

The more days are left, the higher T(i).



The optimal thresholds can be computed 

in backward order by Bellman recursions.

Let E(i)  be the expected score of the 

               optimal strategy when still i candidates are there.

E(0) = 0.0

E(1) = 0.5                T(1) = 0.0: 

                                 you have to take the last candidate,
                                 and it has expected value 0.5



Let x(2) be given, the value of the second to last chance.

For x(2)  <  0.5        it is optimal to postpone 

                                  the launch to the last day

For x(2)  >  0.5        it is optimal to try launch on day i = 2.

Hence,   T(2)  =  0.5 

E(2) =       Prob[x(2) < 0.5] * E(1) 
+  Prob[x(2) > 0.5] * Exp[x(2) | x(2) > 0.5]

  

         =  0.5 * 0.5  + 0.5 * 0.75  =  0.625



General Step  i  >  0

E(i) =      Prob[x(i) < E(i-1)] * E(i-1)  
            +  Prob[x(i) > E(i-1)] * C[E(i-1)]

          where C[E(i-1)] is the conditional expected 
          value of x(i) for x(i) > E(i-1).
 

           C[E(i-1)] = [E(i-1) + 1] / 2. 

This leads to 

E(i) = E(i-1)*E(i-1) + [1 – E(i-1)]*[E(i-1) + 1] / 2
        = 0.5    +    0.5 * E(i-1)*E(i-1) 



E(i)-values are monotonically increasing 
and converging to 1, for i to infinity.

T(i)  =  E(i-1) for all i.



TEAMS  IN  COMPETITION





Land a rover on the moon before the end of 2017.

First      performing private team gets    $US 20 Millions.
Second       performing private team gets                          $US       5  Millions.

   6+ serious competitors!

* * * * * * * * * *

Abstract model with two teams A and B; no second prize.
Launch opportunities in alternating order. 

For odd values of i, team A has a launch opportunity. 
For even values of i, it is B's turn. 



For each i, chance level x(i) is defined like before.

Also the five conditions (1) to (5) are assumed to hold. 

When one of the teams had an unsuccessful launch 
at some day i, the other team gets 
all remaining launch opportunities i-1, i-2, …, 1.  

Values E(i) like before in the 1-team model. 

a(i)   is the expected score of team A, when 
         still i launch days  are available. 
b(i)   is the corresponding expected score for team B. 



Of course, starting values are     a(0) = b(0) = 0.0 .
Recursions (from i to i+1) depend on the parity of i. 

For even i let a(i), b(i), E(i) be known. 

Now given x(i+1), team A should try the launch 
if x(i+1) > a(i). This means T(i+1) = a(i)  and

a(i+1) = a(i)*a(i)  +  0.5*[1 – a(i)*a(i)],
b(i+1) = a(i)*b(i)  +  0.5*[1 – a(i)]*[1 – a(i)]*E(i).
 
Analogously, for odd values of i we get

b(i+1) = b(i)*b(i)  +  0.5*[1 – b(i)*b(i)],
a(i+1) = b(i)*a(i)  +  0.5*[1 – b(i)]*[1 – b(i)]*E(i).





Observation:   For very large i  launch shall be tried, if
                          x(i)  >  square-root (2) – 1  =  0.414

*  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 

The same model, but with second prize 0.25  (25 percent)
 

Result:          For very large i,  launch should be tried, if
                        x(i)  >   [ sq(129) – 7 ] / 8  =  0.545  



Main Insights
 
*  Much higher risks are optimal, if there is a competitor. 

*  Second prize does not change much.

*  Even higher risks are optimal in case of more 
    than two teams   (recursions not shown here).

Near the end of 2017 there is a good chance to see 
several (non-successful) Lunar X missions 

if teams “play” optimally in a game-theoretic sense. 



Historical  Space Race  Situations 

US  1957/1958:     Air Force  vs.  Army   (first US-satellite)

USA vs USSR  1968:     Men around the Moon

 



RELATED  SECRETARY  SCENARIOS

*   Restart from Mars   (during long global dust storms ?!)

*   Tethered Flyby at some Small Asteroid     (harpooning)

 

*   Launch Insurances  (MunichRe):  
     "Launch Insurance Packages"  for the space flight market. 



Two Key Problems   within our Models

*   In reality, the chance values x(i) for different 
     launch days are not stochastically independent. 

     Models with dependence structures are much more
     complicated. 

     (Analysis is underway by C. Pressel and T. Hetz) 

*   Finding distributions for the true x(i)-values

     is non-trivial. 
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