In the table we list the alternating plane graphs discussed in the paper 'Alternating Plane Graphs'. If you click the index, then you can download the graphs in planar_code.

planar_code is a file format for storing planar graphs. It is a binary code that is easy and fast to compute and to decode. Every entry of the code is an unsigned char. The first entry is the number of vertices. After that there is a list of the vertices adjacent to vertex number 1 in clockwise orientation. This list is ended with a 0. Then you have the vertices adjacent to number 2 ended with a 0, etc.

In addition to the encodings of graphs, a planar code file by default begins with the 15 characters >>planar_code<< without end-of-line characters.

Graphs encoded in this format can be read and visualised by software such as CaGe. Programs to process planar_code can also be found on Github.

IndexOrderFacesGroupDualAuthor# of vertices of given degree# of faces with given # of sidesImages
11717C2self-dualFrank Schneider854     854       image
21717C2self-dualGhent group and Frank Schneider854     854       image
31919C16Ghent group9631    955       image
41919C3self-dualGhent group9631    9631      image
51919C1self-dualGhent group9631    9631      image
61919C13Ghent group955     9631      image
71919C3self-dualGhent group9631    9631      image
82020C1self-dualFrank Schneider965     965       image
92121C2self-dualFrank Schneider1056     1056       image
102222C111Frank Schneider1066     1066       image
112222C110Frank Schneider1066     1066       image
122222C213Frank Schneider1066     1066       image
132222C212Frank Schneider1066     1066       image
142323C115Frank Schneider1076     1076       image
152323C114Frank Schneider1076     1076       image
162323C217Frank Schneider1076     1076       image
172323C216Frank Schneider1076     1076       image
182424C119Frank Schneider1086     1086       image
192424C118Frank Schneider1086     1086       image
202525C121Katrin Nimczick and Lisa Scheiber12661    12823      image
212525C120Katrin Nimczick and Lisa Scheiber12823    12661      image
222525C323Karl Scherer12661    12904      image
232525C322Karl Scherer12904    12661      image
242525C2self-dualFrank Schneider1096     1096       image
252525C226Karl Scherer12742    12742      image
262525C225Karl Scherer12742    12742      image
272626C128Frank Schneider1187     1187       image
282626C127Frank Schneider1187     1187       image
292727C1self-dualFrank Schneider1197     1197       image
302828C1self-dualFrank Schneider11107     11107       image
312929C132Frank Schneider1298     1298       image
322929C131Frank Schneider1298     1298       image
332931C137Karl Scherer12863    1597       image
343030C136Frank Schneider12108     12108       image
353033C146Frank Schneider129531   16116       image
363030C134Frank Schneider12108     12108       image
373129C133Karl Scherer1597     12863      image
383131C1self-dualFrank Schneider12118     12118       image
393232C1self-dualFrank Schneider12128     12128       image
403232C141Frank Schneider13109     13109       image
413232C140Frank Schneider13109     13109       image
423232C243Karl Scherer141062    1686101    image
433232C242Karl Scherer1686101  141062      image
443333C145Frank Schneider13119     13119       image
453333C144Frank Schneider13119     13119       image
463330C135Frank Schneider16116     129531     image
473333C249Karl Scherer141081    1688001    image
483333C250Karl Scherer1611222   16863      image
493333C247Karl Scherer1688001  141081      image
503333C248Karl Scherer16863    1611222     image
513434C152Frank Schneider13129     13129       image
523434C151Frank Schneider13129     13129       image
533432C2no dualKarl Scherer16108     168600101  image
543433C1no dualKarl Scherer161062    158811     image
553434C1no dualKarl Scherer1610521   1698001    image
563535C1self-dualFrank Schneider13139     13139       image
573535C2no dualKarl Scherer161144    16108001    image
583536C159Karl Scherer17104211  1710801     image
593635C158Karl Scherer1710801   17104211    image
603636C161Frank Schneider141210     141210       image
613636C160Frank Schneider141210     141210       image
623634C1no dualKarl Scherer171171    1597201    image
633737C1self-dualFrank Schneider141310     141310       image
643737C265Karl Scherer161182    1610101      image
653737C264Karl Scherer1610101    161182      image
663738C170Karl Scherer1710631   1810901     image
673739C277Karl Scherer16108201  181110       image
683838C1self-dualFrank Schneider141410     141410       image
693836C2no dualKarl Scherer181262    18962000001image
703837C166Karl Scherer1810901   1710631     image
713838C172Karl Scherer181064    1810721     image
723838C171Karl Scherer1810721   181064      image
733839C178Karl Scherer17109101  1810101      image
743939C175Frank Schneider141510     141510       image
753939C174Frank Schneider141510     141510       image
763937C1no dualKarl Scherer181110     188820001  image
773937C267Karl Scherer181110     16108201    image
783938C173Karl Scherer1810101    17109101    image
793939C280Karl Scherer189102    181010001    image
803939C279Karl Scherer181010001  189102      image
814040C182Frank Schneider151411     151411       image
824040C181Frank Schneider151411     151411       image
834042D285Karl Scherer1610122    201012       image
844141C1self-dualFrank Schneider151511     151511       image
854240D283Karl Scherer201012     1610122      image
864242C187Frank Schneider151611     151611       image
874242C186Frank Schneider151611     151611       image
884442C2no dualKarl Scherer201212     181012101    image