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Zusammenfassung

Der Mensch spielt nur, wo er in voller Bedeutung des Wortes Mensch ist, und er
ist nur da ganz Mensch, wo er spielt.

Friedrich Schiller

Die große Bedeutung des Spielens in der menschlichen Kultur steht sicherlich außer
Frage. Allein die Geschichte der Brettspiele reicht tausende von Jahren in die Vergangen-
heit. Die frühesten Erwähnungen des Spiels Go sind wenigstens 2500 Jahre [Pot 1984] alt,
und noch heute erfreut sich dieses Spiel großer Beliebtheit. Das bei Kindern beliebte Leit-
erspiel (auch Schlangen und Leitern) nimmt seinen Ursprung bei dem alt-indischen Spiel
Moksha Patamu und ist wenigstens 700 Jahre alt [Par 1999, Nat 2005]. Das Brettspiel
Backgammon, um noch ein weiteres Beispiel zu nennen, leitet sich möglicherweise von
den Römischen Spiel Duodecim Scripta ab und wäre damit über 2000 Jahre alt [Aus 1934].

Die drei genannte Spiele illustrieren unterschiedliche Ausprägungen eines wichtigen
Merkmals. Während das Spiel Go als „Strategiespiel“ bezeichnet wird, handelt es sich beim
Leiterspiel um ein sogenanntes „Glücksspiel“. Diese Einordnung drückt aus, welchen Ein-
flüssen die Ergebnisse einer Spielpartie ausgesetzt sind. Beim Leiterspiel wird der Spielaus-
gang ausschließlich durch Würfeln bestimmmt und ist damit Ausdruck von unbeeinfluss-
barem „Glück“ bzw. „Pech“. Bei dem Spiel Go hingegen wird kein Würfel gebraucht, und
das Ergebnis hängt ausschließlich von den Entscheidungen und Strategien der Spieler ab.
Das Spiel Backgammon nimmt eine interessante Zwischenposition bei dieser Einordung
ein, da der Partieausgang sowohl von Spielerentscheidungen als auch vom Würfelglück
abhängt 1. Es stellt sich daher die Frage, ob sich die Einteilung in Strategiespiele einerseits
und Glücksspiele andererseits sinnvoll verfeinern lässt. Wo ließe sich Beispielsweise das
beliebte Mensch Ärgere Dich Nicht! einordnen? Liegt es eher zwischen Go und Backgammon
oder zwischen Backgammon und dem Leiterspiel?

Aus mathematischer Sicht werden Brettspiele zumeist unter dem Gesichtspunkt der Op-
timierung betrachtet. An erster Stelle steht die Frage: ob und mit welcher Vorgehensweise
sich ein Spiel gewinnen lässt [BCG 1982]. Die vorliegende Arbeit weicht von diesem
Muster ab und widmet sich stattdessen der Frage:

Wie lassen sich Brettspiele zwischen den Kategorien „Glücksspiel“ und „Strate-
giespiel“ einordnen?

1Das ägyptische Spiel Senet liefert ein noch älteres Beispiel für die Kombination aus Strategie und Glück.
Sein Alter wird auf 5000 Jahre geschätzt. Die exakten Regeln sind jedoch nicht bekannt [Pic 1980].

iv



Zur Klärung dieser Frage widmen wir uns dem Konzept der Beeinflussung. Wir führen
die Beeinflussung von Spielergebnissen auf den Einfluss einzelner Spielzüge zurück. Einige
„Spielzüge“ gehen auf den Ausgang von Zufallsereignissen (z. B. Würfelergebnisse) zurück.
Die anderen Spielzüge lassen sich den verschiedenen Spielern zuordnen. Diese Zuord-
nung ermöglicht uns schließlich den Vergleich des Zufallseinflusses mit dem Einfluss der
verschiedenen Spieler.

Die vorliegende Arbeit gliedert sich in zwei Teile. Im ersten Teil betrachten wir die
Klasse der Zwei-Personen-Nullsummenspiele mit vollständigen Informationen. Fußend
auf unserem Vergleich der verschiedenen Einflüsse entwickeln wir die Maßzahl chanciness
(Glücksbestimmtheit). Der chanciness-Wert eines Spieles ist nahe null falls das Spiel kaum
von Würfelergebnissen und ähnlichen Zufallselementen beeinflusst wird. Spiele, deren
Ausgang stark vom Zufall beeinflusst wird, haben hingegen einen chanciness-Wert nahe bei
eins. Ein wichtiges Ergebnis unserer Betrachtungen ist die Abhängigkeit dieser Maßzahl
vom Verhalten der Spieler. Am Beispiel von computergesteuerten Spielern berechnen wir
näherungsweise die chanciness für ausgewählte Spiele. Dieser Teil der Arbeit basiert auf
einer vorherigen Publikation des Autors [Erd 2009].

Im zweiten Teil der Arbeit verallgemeinern wir unsere Vorgehensweise auf die Klasse
der Nicht-Nullsummenspiele mit beliebiger Spielerzahl und vollständigen Informationen.
Dies führt uns zu der Berücksichtigung verschiedener Spielerperspektiven. Es sind Spiele
konstruierbar, die aus der Sicht eines Teilnehmers den Charakter eines Glücksspiels haben,
während sie aus der Perspektive anderer Teilnehmer als Strategiespiel erscheinen. Wir be-
trachten daher die chanciness eines Spiels aus Sicht der verschiedenen Spielerperspektiven
(Startpositionen). Wir zeigen außerdem, dass eine einzelne Maßzahl nicht ausreicht, um
alle denkbaren Spiele und Perspektiven einzuordnen. Daher führen wir die zusätzliche
Maßzahl controllability (Steuerbarkeit) ein. Der controllability-Wert eines Spiels beschreibt
den Einfluss eines Spielers auf sein privates Spielresultat. Der Wert liegt nahe bei null
falls dieses Resultat hauptsächlich vom Einfluss der Mitspieler sowie vom Zufall abhängt.
Ist andererseits das Ergebnis jedes Spielers hauptsächlich von dessem eigenene Handeln
bestimmt ergibt sich ein controllability-Wert nahe eins. Die Summe von chanciness und
controllability ist kleiner oder gleich eins. Bei Spielen, deren Ergebnis stark durch eine
„ungerechte“ Ausgangssituation bestimmt ist, liegt die Summe aus chanciness und control-
lability nahe bei null.

Die Ergebnisse unserer Arbeit haben einen ausgeprägt theoretischen Charakter. Die
starke Abhängigkeit unserer Maßzahlen von einem Verhaltensmodell der Spielteilnehmer
erschwert die praktische Anwendung. Dennoch weisen wir am Beispiel von computerge-
steuerten Spielern nach, dass eine näherungsweise Berechnung möglich ist.
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Overview

Games are an important part of mankind’s cultural heritage. Board games such as go
and backgammon are thousands of years old, yet they still have an enthusiastic following.
The fact that more than a thousand new board games are published each year[Ald 2000]
underlines the public interest in game playing.

One of many properties, used to classify and discuss games is the dependence of game
results on chance and player skill. Typically, games are described as “game of chance”,
“game of skill”, or they are said to lie somewhere in between those extremes. The quanti-
tative assessment of the relationship between chance and skill has received little scholarly
attention.

In this thesis we offer a novel approach to the characterization of chance and skill in
games. Our approach is based on the analysis of individual moves. This allows us to
analyze matches (single game rounds) as well as games.

The thesis is organized in two parts. In the first part, we present our analysis for the
class of two-player zero-sum games with perfect information. We introduce the measure
of chanciness to describe the relative influence of chance on games. This part is based on
a previous publication by the author [Erd 2009].

In Part II we generalize our approach and apply it to the class of general-sum games of
perfect information with an arbitrary number of players. We also supplement the measure
of chanciness with the new measure controllability. The controllability of a game describes
the relative influence of the players on their personal game results.

Both parts can be read independently of each other. However, familiarity with our basic
concepts from Part I helps with understanding the generalizations in Part II.
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Part I

The Chanciness of Two-Player
Zero-Sum Games
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1 Introduction

Games are conventionally classified as games of chance, games of skill, or games with
mixed characteristics. The desire for such a classification stems from various sources:

• Many states have laws to regulate gambling, in other words, playing games of
chance with money at stake. It is up to legislators and lawyers to decide which games
are within the scope of such laws. In Germany, the gambling law “Glücksspielgesetz”
defines games of chance thus: A game of chance is one in which outcomes are fully
or mostly determined by chance [Sta 2007]. The term “mostly” is not elucidated.
This distinction becomes even less clear when the accumulated outcomes of numer-
ous game rounds are considered. When the game in question involves even a tiny
bit of skill, the central limit theorem may be used to argue that the accumulated
result of a long sequence of games is determined mostly by skill [Alo 2007].

The controversial nature of the skill / chance distinction is apparent from US-American
court rulings regarding poker [BDS 2002]. Poker was ruled a game of skill in Penn-
sylvania [Cyp 2009] and a game of chance in North Carolina [Bur 2007]. This con-
tradiction leaves open the task of quantifying the skill and chance inherent in a
game.

• Naturally, the people who play games are interested in matters of chance and skill.
Some players prefer games of chance over games of skill, while others have op-
posite tastes. In this context, a precise classification of games may not be impor-
tant. However, the results of individual matches (instances) lends itself to analysis.
Having won a game with a chance component, we may ask ourselves whether our
victory was due to our skillful moves or simply caused by a string of lucky dice
rolls [EL 2009]. The answer to this question is central to the feeling of accomplish-
ment of the players and thus to the enjoyment of the game.

• A third group of people who concern themselves with the balance of chance and skill
in games are game inventors. When designing a game for a particular audience, the
inventor may wish to realize a particular level of chance and skill. Unfortunately, it
is hard to measure the effects that subtle rule variations have on this balance.

We are interested in computer-aided game inventing as proposed by Althöfer [Alt 2003].
We wish to use computers in place of human players to test newly designed games. A
prerequisite of such schemes is the existence of computer-readable rule descriptions. The
field of general game playing [LHH+ 2008, Pel 1994, FB 2008] provides computer algo-
rithms capable of using such rule descriptions to play games against each other.
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Our eventual goal is an algorithm for automatically determining the extent of chance
and skill in a game. In this paper we present the concept of chanciness C, our theoretical
groundwork for such an undertaking. The chanciness of a game is high if game results are
strongly influenced by chance, and it is low if the game allows for skillful play. We will
show that our chanciness depends on the game players (agents). This leads to a measure
of C(game,X ,Y ) where X and Y are specific agents who compete in a two-player game. We
narrow our focus to two-player zero-sum games of perfect information, sequential moves,
finite length, and a finite number of moves in every game state.

In Chapter 2 we discuss previous works on formalizing the extent of chance and skill in
games. We introduce terms and concepts for our discussion in Chapter 3. Our concept of
chanciness relies on the analysis of individual game instances (matches). To what extent
did player moves and random events influence the match result? We deal with the subject
of influence in Chapter 4. Based on our notion of influence we define the relative influence
of chance in Chapter 5. In Chapter 6 we generalize from matches to games and define
chanciness. Chapter 7 contains exemplary measurements of chanciness for different games
that are played by various computer agents. Chapter 8 relates our concept of chanciness
to games played by humans. In Chapter 9 we summarize our findings and propose further
lines of research.
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2 Previous Work

The question whether games should be legally classified as games of skill or games of luck
has been addressed by Borm and Dreef since 2001 [BvdG 2001, DBvdG 2004, Dre 2005].
Based on three types of playing agents they introduce the concept of Relative Skill (RS)
and give values for the games of Roulette, Black Jack, Poker and other games. Games that
allow for skillful play receive a higher rating of RS than games in which chance dominates
the result. Thus, RS expresses the opposite idea of chanciness and is closely linked to our
question.

RS is measured by comparing expected game rewards of beginners, optimal players and
fictive players. “Fictive players” know in advance the result of any kind of random event.

RS =
gainoptimal−gainbeginner

gainfictive−gainbeginner
(2.1)

Dreef recommends that the playing style of the beginner is to be modelled in one of three
ways depending on what is called “the structure” of the game.

• random move selection

• quantitative analysis of human beginners playing style

• using domain expert knowledge

Our objections to the measure of relative skill are the following. First of all, RS depends
on the analysis of optimal play. Discovery of optimal play, however, requires resources
beyond the scope of automatic analysis. For some games, even advanced human play will
be far from optimal, which diminishes the relevance of the measure for analysis of human
behavior. Secondly, the notion of “fictive players” allows the creation of games that receive
ratings of RS which contradict common sense (see the game of Lottery Chess in Appendix
A).

However, as our most important objection to relative skill, we wish to argue that an
assessment of chance and skill for a given game depends strongly on the particular behav-
ior of the playing agents. Therefore, a measure that only considers three agents gives an
incomplete picture.
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3 Terms and Concepts

In this section, we introduce the necessary terms and concepts for our discussion of chanci-
ness. The starting point is the central term game. We wish to discuss non-deterministic1

finite zero-sum games of two players, perfect information and sequential moves2.

Max node

Min node

Chance node

terminal node-2 1.5 0 -11 -1 -4

2

0.5 0.5

Figure 3.1: An exemplary game tree with chance nodes.

As our game model we use the extensive form with chance moves [SLB 2008]. A game
G is represented by a finite tree as in Figure 3.1. Nodes of the tree correspond to game
states. The leafs of the tree represent terminal game states and are labeled with the
deterministic result r of the game. The game result r is a real number that gives the
reward for player Max (his goal is to maximize r). As G is a zero-sum game, the other
player, Min, receives −r as reward. The inner nodes represent non-terminal states that
require a move. They are labeled as either Max or Min nodes if that player is to move. If
the game state requires a “chance move”, such as a roll of the dice or the drawing of cards
from a randomized deck, the node is labeled as a “chance node”. The edges of the tree
correspond to the available moves by either players (“player moves”) or chance (“chance
moves”). Chance moves are labeled with their respective probabilities. For every chance
node s we define C (s,s′) as the probability that chance will move from s to the child node
s′.

A match g of game G is given by a tuple g = (X ,Y,(s0,s1, . . . ,sk)). X and Y are agents
who take on the roles of players Max and Min. (s0, . . . ,sk) is a path of nodes (game states)
through the tree from the root to a leaf node. As we are interested in computer-aided game

1We treat deterministic games as a special case of non-deterministic games.
2Games with sequential moves are also known as Dynamic Games.
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3 Terms and Concepts

inventing, our agents are computer algorithms. The terms “player” and “agent” are almost
synonymous. We use the term “player” to emphasize the roles in a game (Max and Min).
The term “agent” emphasizes the algorithm that is used to fill the role of a player.

Since we are not interested in how our agents form their move decisions, we can use a
very simple agent model. It suffices that the agents are somehow able to select their move
from the finite set of available moves. To reflect our ignorance of the selection process,
we use a stochastic model. For every game G let SG denote the set of all possible states
of G. Let SMax

G ⊆ SG denote the set of all states in which player Max has to move. For
every game state s ∈ SG let Children(s) = {c1,c2, . . . ,cn} denote the set of states that can be
reached by one legal move. An agent X , capable of playing G as Max is given by a function
from SMax

G ×SG to the real numbers. X(s,s′) = p is the probability that agent X will move
from state s to the child node s′. The probabilities given by X must meet the following
constraint: [

∑
c∈Children(s)

X(s,c)

]
= 1, X(s,c)≥ 0 (3.1)

Likewise, agents capable of playing G as Min are given by a function from SMin
G × SG to

the real numbers.
Deterministic agents are handled as a special case of stochastic agents. For the sake

of simplicity our agents only consider the current state s when selecting their move. This
stochastic independence of moves is not a requirement for the calculation of chanciness. In
principle, agents could consider previous states and opponent moves when making their
move3

Using the terms defined above, we can describe a wide selection of board games such
as chess, backgammon and Pachisi (reduced to two players). When viewed as a two-
player game between player and bank, even Roulette can be modeled in these terms. Care
must be taken when modelling some of these games as a tree of finite depth. While all
games have finite length in practice, some games such as backgammon allow for arbitrarily
long matches4. One solution lies in modifying the rules slightly, similar to the 50 move
rule[FID 2005] in tournament chess (without this rule, chess would also allow matches of
arbitrary length). For the practical application of our game measures, it is sufficient that
matches terminate eventually.

3This assumes that the game is represented by a real tree. (Two chess positions with the same board and
different histories would be represented by two different nodes).

4However, it has been proven that backgammon ends with probability 1 [McC 1994].
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4 The Concept of Influence

When describing a game G as a game of chance or a game of skill humans employ an
intuitive understanding of influence. To qualify as a game of chance, G must involve some
sort of randomizing device and that device must have an influence on the game result.
Likewise, to deserve the label “game of skill”, there must be room for making “good” and
“bad” move decisions by the players. In other words, players must be able to influence
game results through skillful decisions. If the result of a game is subject to influence of
both chance and skill, we can try to compare their relative importance. For a scientifically
meaningful comparison we must develop a rigorous definition of influence.

In Section 4.1 we explain our approach for formalizing the concept of influence. This
leads us to the need for evaluating game states. We discuss problems related to positional
evaluation in Section 4.2 and introduce relative positional values in Section 4.3. We explain
how relative positional values solve the aforementioned problems in Section 4.4 and finally
present our definition of influence in Section 4.5.

4.1 Approach to Formalization

To understand influence we must distinguish between the game G and a match g of G that
took place between specific players. When talking about the game G we actually discuss
possible influence. When we say G is a game of chance, we are saying, a typical match g
of G is strongly influenced by chance. However, not every match plays out the same. If
one player gets very lucky, he may win without effort. In another match, the influence
of dice rolls may favor both players equally and the result is then decided by the skill of
the players. Therefore, we will define influence for matches g of game G. After we have
understood how chance and skill affect matches, we generalize our findings to talk about
the properties of G.

What exactly is influence? When we talk about the influence of moves (player moves
or chance moves), we talk about their influence on the game result. A single move rarely
decides the game. Instead, moves lead to game states in which a player has improved or
reduced chances of winning. From the perspective of player Max, a move has a positive
influence if it improves his position and hence increases his expected reward from the
game. This interpretation is crucial because it allows us to quantify influence. We evaluate
consecutive game states and define influence as the change in evaluation. This approach
leads us to the problem of evaluating game states.

7



4 The Concept of Influence

4.2 Difficulties of Positional Evaluation

For deterministic 2-player zero-sum games such as chess, the minimax algorithm allows us
to compute the game-theoretic value of every position by backward induction [Zer 1913,
vN 1927]. These values represent the game result for agents who play optimally. For
non-deterministic games, the expectimax algorithm (a generalization of minimax for trees
with chance nodes) computes the expected values for optimal agents [SLB 2008]. The
expectimax value V (s) of a position s is given by a recursive formula:

V (s) :=



r(s) if s is terminal

max
c∈Children(s)

V (c) if Max moves in s

min
c∈Children(s)

V (c) if Min moves in s

∑
c∈Children(s)

C (s,c)∗V (c) if Chance moves in s

(4.1)

Here r(s) is the game result for a terminal position s, By starting at the leafs and backing
up towards the root, the expectimax value can be computed for every node. Figure 4.1
gives the expectimax values for all game states of our example game from Chapter 3.

Max node

Min node

Chance node

terminal node-2 1.5 0 -11 -1 -4

2

0.5 0.5

1

1

-2 0

-1

1
a

b c

d e f

Figure 4.1: A game tree with expectimax values.

The minimax and expectimax algorithm are widely used to analyze games. They also
form the basis for many game playing agents. However, in light of our goals, the positional
values computed by these algorithms have two important drawbacks.

• The Interpretation Problem arises when using expectimax values to reason about
games between imperfect agents. Consider the game tree in Figure 4.1. In the
root position a, an optimal agent playing as Max moves to position b which leads
to the maximum reward r = 1. For that agent, moving to state c instead would be
a “bad” move (adverse influence) because his expected reward would drop from 1
to -1. However, if an imperfect agent was playing as Max, that assessment might

8



4.3 Relative Positional Values

change. Consider an imperfect agent X who does not play optimal in position d. Let
X have the probabilities (0.25,0.25,0.5) for selecting the left, middle and right child
of d respectively (based on Figure 4.1). Thus, in position d, agent X would have an
expected reward of −2. If we assume further that X plays optimal in position f and
Y plays optimal as well, we must conclude that the move to b is “bad” for agent X
while the move to c is “good” (beneficial influence). This example demonstrates that
positions must be evaluated with respect to the playing agents. As another example,
imagine a chess master giving advice to a novice. A risky gambit that the chess
master would play is not advisable for the novice who cannot exploit the situation.
Thus, the gambit would be a “good” move for the master, but a “bad” move for
the novice. When using expectimax values to calculate the influence of moves, the
interpretation problem crucially effects our results.

• The practical use of expectimax values is further hampered by the Resource Problem:
expectimax values cannot be accurately approximated with generic algorithms for
large game trees. Since the expectimax algorithm requires the evaluation of almost1

the complete game tree, it is unfeasible to compute the exact values for complex
games. In practice, expectimax values are approximated by using heuristics. These
heuristic methods can be very efficient but must often be tuned for every new game.
General game playing algorithms avoid this tuning, but they give no guarantees as
to the accuracy of their approximations.

In the next section we introduce a different approach to positional evaluation which avoids
these problems.

4.3 Relative Positional Values

We define the relative positional value Ṽ(s,X ,Y ) for a game state s and the agents X ,Y. The
term relative emphasizes that the positional value depends on the agents.

The result r of a match that is started in state s and then played out by the agents X (as
Max) and Y (as Min) can be seen as the realization of a random variable R. When s is a
terminal state the realization of R is a constant. Otherwise the value of r depends on the
stochastic behavior of X ,Y , and on chance. We define the relative positional value as the
expected value of R.

Definition 4.2

Ṽ(s,X ,Y ) := E(R)

Figure 4.2 shows an annotated game tree. The move probabilities for chance and for
exemplary agents X ,Y are given for every move in the tree. The relative positional values

1A tree may allow safe pruning of some branches (See [HBS 2006]).
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4 The Concept of Influence

for every node in the tree were computed by a recursive formula that looks similar to
Formula 4.1 but replaces the min and max terms with expectation terms.

Ṽ(s,X ,Y ) :=



r(s) if s is terminal

∑
c∈Children(s)

X(s,c)∗ Ṽ(c,X ,Y ) if X(Max) moves in s

∑
c∈Children(s)

Y (s,c)∗ Ṽ(c,X ,Y ) if Y (Min) moves in s

∑
c∈Children(s)

C (s,c)∗ Ṽ(c,X ,Y ) if Chance moves in s

(4.3)

Again, r(s) is the game result for a terminal position s.

Max node

Min node

Chance node

terminal node-2 1.5 0 -11 -1 -4

2-2

-2

0-2

-1

-1.4

0.25 0.25 0.5

1.0 0.0

1.0 0.0

0.4 0.6

1.0 0.0

0.5 0.5

a

b c

d e f

Figure 4.2: A game tree with move probabilities for specific agents X and Y. The relative
positional values for these agents are given for every node.

4.4 Relative Positional Values Compared to Expectimax Values

Our new concept of relative positional values solves the two problems from Section 4.2.
The Interpretation Problem is resolved by taking the behavior of imperfect agents into
account. Figure 4.2 above shows the same game tree as Figure 4.1, this time annotated
with relative positional values for the imperfect agents X and Y. Our intuitions of “good”
and “bad” moves for X are reflected by increasing and decreasing positional values.

The move from root node a to node c is “good” because Ṽ(c,X ,Y ) = −1 > −1.4 =
Ṽ(a,X ,Y ). Likewise, the move from a to the other successor b is “bad” because Ṽ(b,X ,Y ) =
−2 <−1.4 = Ṽ(a,X ,Y ). It must be stressed that these values (as well as the judgements of
“good” and “bad”) are specific to the agents X and Y.

The Resource Problem from Section 4.2 stems from the algorithmic complexity of com-
puting minimax and expectimax values. The exact computation of relative positional values
is just as expensive as the computation of expectimax values.
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4.5 Influence Defined

However, it is possible to approximate relative positional values with Monte Carlo meth-
ods thus saving computing time. As in Section 4.3 let R be a random variable that gives
the result of a match between X and Y with start in state s. Each simulation of such a
match yields a realization Ri of R. The average over n such realizations Ri can be used to
approximate the expected value of R and hence the relative positional value of s for X and
Y.

Ṽ(s,X ,Y )≈ Ṽapprox =
1
n

n

∑
i=1

Ri (4.4)

Since we intend to use computer algorithms as agents, simulation games can be repeated
as often as desired (given enough computing resources).

In Section 4.2 we noted that approximations of expectimax values either rely on game
specific knowledge or fail to give guarantees on accuracy.

In contrast, approximations of relative positional values via Monte Carlo methods are
general and give such guarantees. They are general because we already assume computer
agents that can be used for simulation games (these agents are generally imperfect and
therefore unsuitable for approximating expectimax values).

Monte Carlo methods also give guarantees on the accuracy of approximation. The stan-
dard deviation of Ṽapprox (and thus the error in approximation) varies inversely with the
square root of the number of observations: σ(Ṽapprox) = σ(R)/

√
n (central limit theorem).

In conclusion we deem relative positional values suitable for evaluating the influence of
game moves.

4.5 Influence Defined

Our concept of relative positional values from Section 4.3 allow us to define the influence
I of moves. Let m = (s,s′) be a move that transforms position s into s′. We define the
influence of that move in a game between the agents X ,Y as follows.

Definition 4.5
I(m,X ,Y ) := Ṽ(s′,X ,Y )− Ṽ(s,X ,Y )

This definition does not distinguish between “player moves” and “chance moves”. Fig-
ure 4.3 is based on the same game tree and agents as Figure 4.2. Additionally, it shows
the influence of all moves.

As a consequence of Definition 4.5 we observe:

Observation 4.6 “Deterministic moves” always have influence 0.

We call a move m = (s,s′) “deterministic move” for agent X if state s is always followed
by the specific move s′. In other words X(s,s′) = 1. As an example see the move (b,d)
in Figure 4.3. Here, the agent Y playing as Min moves from b to d with probability 1.
Observation 4.6 follows directly from Equation 4.3 and Definition 4.5.

11



4 The Concept of Influence

Max node

Min node

Chance node

terminal node-2 1.5 0 -11 -1 -4
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Figure 4.3: A game tree with move probabilities, relative positional values and the influ-
ence I for all moves.
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5 The Relative Influence of Chance

In the previous section we have defined the influence I(m,X ,Y ) of a move m in a game
between the agents X and Y. Using this definition we can compare the influence of chance
moves with the influence of player moves on the result of a match.

Let g = (X ,Y,(s0,s1, . . . ,sn) be a match of game G between X and Y (X playing as Max,
Y as Min). Let mi denote the move (si,si+1). The result of g is the relative value of its final
position Ṽ(sn,X ,Y ). As the value of a terminal game state does not depend on the agents
anymore, relative positional value and expectimax value are the same, hence Ṽ(sn,X ,Y ) =
V (sn). Using our definition of influence we can express the result of g by the influences of
the moves si.

Lemma 5.1

V (sn) = Ṽ(sn,X ,Y ) = Ṽ(s0,X ,Y )+
n−1

∑
i=0

I(mi,X ,Y )

Idea of the proof: Applying Definition 4.5 leads to a telescoping sum that leaves only the
term Ṽ(sn,X ,Y ) �

Lemma 5.1 “explains” how the combined influence of all moves leads to the result of
match g. The term Ṽ(s0,X ,Y ) is special because it is not the influence of a move but the
expected value of the starting position. It reflects the “fairness” of the game G combined
with the skill difference of the agents X and Y. We call Ṽ(s0,X ,Y ) the match expectation
ME . We can group all the moves that were made in g according to their mover. This gives
use the set of player moves MP and the set of chance moves MC .

MP := {(si,si+1) | Max or Min to move in si}
MC := {(si,si+1) | chance to move in si}

The sets MP and MC allow us to sum the combined influences of player moves and chance
moves as IP and IC .

IP = ∑
m∈MP

I(m,X ,Y )

IC = ∑
m∈MC

I(m,X ,Y )

The sets MP,MC and the values ME, IP, IC all depend on a concrete match g.

13



5 The Relative Influence of Chance

We can now rephrase Lemma 5.1 as

V (sn) = ME+ IP+ IC (5.2)

Based on these terms we define c(g), the relative influence of chance on the result of match
g.

Definition 5.3

c(g) :=
| IC |

|ME |+ | IP |+ | IC |
if |ME |+ | IP |+ | IC | 6= 0

We intentionally leave the special case of |ME |+ | IP |+ | IC |= 0 undefined. Chapter 6 will
show that the definition of this special case has no influence on our measure of chanciness.

Max node

Min node

Chance node

terminal node-2 1.5 0 -11 -1 -4

2-2

-2

0-2

-1

-1.4

I=0

I=-1

I=0.4

s0

s1

s2

s3

Figure 5.1: A game tree with and a single match (path) in that tree with move influence
for the agents X and Y .

Figure 5.1 shows an exemplary match g = (X ,Y,(s0 . . .s3). We observe that Lemma 5.1
holds:

V (s3) = −2, ME =−1.4, IP = 0.4, IC =−1

−2 = −1.4−1+0.4

We calculate the relative influence of chance for g.

c(g) =
| IC |

|ME |+ | IP |+ | IC |
=

1
1.4+1+0.4

≈ 0.36

5.1 Properties of c(g)

For a match g = (X ,Y,(s0 . . .sn), the relative influence of chance c(g) is a real number from
the interval [0,1]. We can analyze how the components of Definition 5.3 are affected by
match properties and how they affect the value c(g).
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5.1 Properties of c(g)

IC: If a game does not allow for chance moves, the influence of chance IC will be zero for
any match g and hence c(g) will be zero as well. For a game that does allow chance
moves IC will generally vary from match to match. It may still be zero (or close
to zero) for some matches if the influence of chance moves cancel out each other.
For example, if a sequence of lucky dice rolls for player Max is followed be another
sequence of dice rolls that favor player Min. Thus, even for games of chance, some
matches may be completely decided by player actions.

IP: The term IP quantifies the combined influence of the players for a match g. Whereas
games without chance moves are common, games without player moves are uncom-
mon and may not be at all recognized as “games”. Even though player moves occur
they may not be influential to the game result. For example, picking red or black
in Roulette has no impact on the expected result. Thus, games that do not allow for
“bad” and “good” moves will have low values of IP for any match g. According to
Observation 4.6, a game where “good” moves are obvious to the agents will also al-
low for little player influence. This resonates strongly with a depreciation of games
by humans who have fully mastered those games. Few people return to the game
of Tic-Tac-Toe after mastering its “strategy”. High values of IP indicate that a game
allows for influential moves and that the agents have not yet mastered the strategy.
Consequently such matches will receive lower values of c(g).

ME: The match expectation ME is defined as the expected result of a match (starting
at the root position) between specific agents. Its value does not depend on the
moves of a match because all matches for a game share the same root position. It is
effectively a function of the game G and the agents X ,Y. This function ME(G,X ,Y )
combines two different aspects of a match: the skill difference between the agents
and the asymmetry of game G. If two agents of differing skill play a game that
allows for influential moves, the better player can expect a higher reward. This
usually leads to a higher value of |ME |. If the asymmetry of the player positions
confers an advantage to one of the players, this also tends to increase the value of
|ME |. Either effect is independent of chance and tends to increase the predictability
of game results. Consequently, |ME | appears in the denominator of Definition 5.3.

As a remarkable consequence of combining skill difference and game asymmetry
in the term ME, the playing order of the agents is relevant for the value of c(g).
In general |ME(G,X ,Y )| 6= |ME(G,Y,X)|. To understand this, we must imagine an
asymmetric game G (favoring player Max), a skilled agent X and a less skilled
agent Y. If X plays as Max, ME will be high because the stronger agent plays in
an advantageous position. If X plays as Min, ME will be closer to zero because
skill differential and game asymmetry cancel each other out. In this case we have
|ME(G,X ,Y )|> |ME(G,Y,X)|.
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6 Chanciness

In the previous section we have defined the relative influence of chance to analyze a specific
match g of the game G. In this section we discuss how those results can be aggregated for
the analysis of game G.

Before the agents X and Y play a match g of game G, the moves that will be taken and
the result of the match are generally unknown. Moves and result depend on stochastic
processes, thus IP, IC, and likewise the relative influence of chance c(g) are random vari-
ables (ME is a constant).

It might seem intuitive to define chanciness as the expected value of c(g). However, that
approach would lead to counterintuitive results for some games. Consider a game G and
two deterministic agents X ,Y that lead to the following situation:

ME = 1, IP = 0 for all matches

| IC | = 0 for 90% of the matches

| IC | = 1010 for 10% of the matches

c(g) =
0

1+0+0
= 0 for 90% of the matches

c(g) =
1010

1+0+1010 ≈ 1 for 10% of the matches

Most single matches are decided by the skill difference of the agents (X having and ad-
vantage over Y ) and the expected value of c(g) would be approximately 0.1. This naive
approach however, fails to take the different magnitudes of influence into account. In
10% of the matches, chance has a dramatic influence on the result. If the agents were to
play a series of 100 matches, it is very likely that the influence of chance would dominate
the cumulative result. In this light a chanciness of 0.1 seems inappropriate.

The problem exemplified here is related to the Fallacy of the Averages [Wag 1969]. The
discrepancy in interpretation boils down to the difference of applying the expectation
operator E before or after a nonlinear transformation (in this case division) 1. To promote
the second interpretation we define the chanciness C of a game when played by X and Y
as follows:

1Another non-linear operation in the definition of c(g) is the absolute value operation. Applying the expec-
tation operator E before taking the absolute value gives another candidate formula for chanciness. Since
E(IC) = E(IP) = 0 this formula would lead to a constant chanciness of zero for any game G and agents X ,Y
(undefined for ME = 0). Obviously, this definition is not useful for discriminating games.
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Definition 6.1

C(G,X ,Y ) :=
E(| IC |)

|ME |+E(| IP |)+E(| IC |)

Applying this definition to the example above gives a chanciness of 109

1+0+109 ≈ 1.
In Chapter 5 we left the relative influence of chance c(g) undefined for a denominator

of zero. This does not present a problem for Definition 6.1 as long as some matches are
influenced by chance or skill. In theory, the denominator of Definition 6.1 might be zero as
well. In our opinion, this is not a problem either, because games where ME,E(| IP |), and
E(| IC |) all equal zero are rather uninteresting. E(| IC |) = 0 implies that IC is always zero
and thus chance moves are meaningless for the outcome of the game. Likewise E(| IP |) =
0 implies that IP is always zero and hence each player move is either deterministic or
meaningless for the outcome of the game. In fact, every state in the game tree that is ever
visited would have the same relative positional value of zero.

Our chanciness C(G,X ,Y ) measures the propensity of matches to be (relatively) influ-
enced by chance. The chanciness for a specific game and specific agents can be computed
exactly by calculating the influence and probability of every possible move in G. For the
game and agents from Figure 4.3 we receive a chanciness of ≈ 0.197.

For obvious reasons, this exhaustive method of computation quickly becomes unfeasible
when considering larger game trees. Instead, we approximate chanciness via sampling.
A number of matches gi is played and the weighted sample mean of c(gi) is taken as
approximation of chanciness.

C(G,X ,Y )≈ ∑gi | IC |
∑gi |ME |+ | IP |+ | IC |

(6.2)

In the next section we present the results of such measurements.
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7 Simulation Results

In this Chapter we present measurements of chanciness for various combinations of games
and agents. The combinations of games and agents are chosen so as to highlight impor-
tant properties of chanciness. Relative positional values were calculated with the Lookup
Sampling algorithm (see Appendix B), a more efficient version of the simple sampling
algorithm described in Section 4.4.

7.1 PaCRaWa

We introduce the game PaCRaWa (Partially Controlled Random Walks). It serves as a very
simple game model. More precisely PaCRaWa[d,T,a] is a class of games, as the rules
contain several parameters: the “power” of chance d ∈ R+

0 , the number of turns T ∈ N,
and the beginner’s advantage a ∈ R . The playing material consists of a counter variable
c ∈ R and a fair coin. At the beginning of the game, c is set to zero. The two players
Max and Min take turns. In every turn there are exactly two legal moves: increment c by
one or decrement c by one. After a player move, the coin is tossed and according to its
outcome, c is either incremented or decremented by d (the “power” parameter). Player
Max takes the first move and the game ends after T turns (2×T moves). At the end of
the game, player Max is awarded c+a as reward (Min receiving −(c+a)). For d > 0 this
game contains both elements of skill and elements of chance as its result is influenced by
player choices as well as random events. The trivial choice of moves in PaCRaWa serves
to illustrate an important point. It is possible for agents to master the strategy of a game,
whereupon the game may turn into a pure game of chance. Thus, the perceived nature of
the game changes with the skill of the agents. This again justifies our belief that a game
should be judged in reference to the agents.

We conducted sets of experiments with three different agents. Agent X plays perfectly,
agent Y plays the correct move with probability 0.75 and the wrong move with probability
0.25. Agent Z plays the correct move with probability 0.5.

In a first set of experiments we tested the effect of different agent combinations and
“chance powers” d on chanciness. Figure 7.1 generally shows a positive correlation be-
tween d and chanciness, which is consistent with our intuition regarding the influence of
chance. The effect of different agents on chanciness is a bit more complicated. In the
two-player matches, stronger agents experience more chanciness. This is to be expected,
as the strong moves cancel each other out and gains can only be made with lucky flips
of the coin. When a strong agent faces a weak opponent, the game has little chanciness,
because the skill difference results in a definite score advantage for the stronger agent.

In a second set of experiments we tested the effect of different game lengths T on
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7.2 EinStein Würfelt Nicht

(Max, Min)\d 0.1 0.5 1.0

(X ,X) 0.97 0.98 0.98
(Y,Y ) 0.11 0.37 0.53
(Z,Z) 0.09 0.33 0.47
(X ,Y ) 0.06 0.24 0.37
(Y,Z) 0.05 0.21 0.34
(X ,Z) 0.04 0.16 0.27

Figure 7.1: chanciness of PaCRaWa[d,T = 10,a = 0] for different chance powers d, and
different agents (1000 matches per value, σ < 0.01).

chanciness. Figure 7.2 shows the chanciness for different game lengths and agents. We
observe that games with an odd number of turns are asymmetric and give an advantage
to player Max. If Max is played by a strong agent, that advantage translates into a high
match expectation ME and thus reduced chanciness. ME also increases with game length,
when the agents have differing skills.

(Max, Min)\T 1 2 5 6 31 32

(X ,X) 0.50 0.97 0.65 0.97 0.80 0.98
(Y,Y ) 0.45 0.54 0.48 0.58 0.51 0.54
(Z,Z) 0.49 0.52 0.50 0.48 0.47 0.52
(X ,Y ) 0.50 0.45 0.37 0.41 0.29 0.30
(Y,Z) 0.45 0.38 0.36 0.36 0.27 0.27
(X ,Z) 0.50 0.33 0.32 0.31 0.18 0.18

Figure 7.2: chanciness of PaCRaWa[d = 1,T,a = 0] for different game lengths T and various
players P (1000 matches per value, σ < 0.01).

The error in our approximations of chanciness is obvious in games between the agents
(X ,X) and even game lengths T. We would expect the player influence IP to be zero
because Max and Min moves always cancel each other out. Likewise ME should be zero
because both players have the same number of moves and the coin is fair. Consequently,
chanciness should equal 1. However, in Figure 7.2 the highest value of chanciness is 0.98.

Even though PaCRaWa is an exceedingly simple game, it took 200 minutes to compute
the data tables in this section (albeit with unoptimized code).

7.2 EinStein Würfelt Nicht

“EinStein würfelt nicht!” is a popular board game designed by Ingo Althöfer [Alt 2004a,
Ald 2004]. The title can be translated either as “A single stone does not play dice” or
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7 Simulation Results

“Einstein does not play dice”. This play on words alludes to the game’s rules and is also a
reference to Albert Einstein’s famous quotation about God and dice. The game is played
by two players who rely on chance and skill to fulfill their objectives. “EinStein würfelt
nicht!” can be played online for free at [Mal 2002].
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Figure 7.3: Win rates in EWN of Monte Carlo Agents with different strengths versus an
opponent who moves at random.

We introduce a game with slightly different rules and examine the effects of that rule
change on chanciness. We will denote the original game as EWN and our variant as EWN.

In EWN, players alternate in moving their pieces which are numbered from 1 to 6.
Before a move can be undertaken, a six-sided die is cast and the number on the die
indicates the piece that must be moved. During the course of the game pieces are removed
from play. If the active player has lost piece i and the die shows that number, the player
may choose between the piece with the closest number to i, higher than i and the piece
with the closest number lower than i (for detailed rules see [Alt 2004a]).

In our variant EWN, this choice is abolished. The player always has to move the piece
with the next available piece after i in the cyclic order (1,2, . . . ,6,1,2, . . .). Because of this
rule change, some situations in EWN offer fewer move choices than they would in EWN.

For our experiments we have used agents that employ the Monte Carlo algorithm to
select their moves [Abr 1990, BH 2003]. Game states are evaluated by the mean result
of k random matches. The child move with the maximum value is then played. We
denote these Monte Carlo Agents as MCk, with k indicating the number of random matches.
The playing strength of Monte Carlo Agents in game of EWN grows with k as shown in
Figure 7.3.

Figure 7.4 shows the chanciness of different player match-ups for the games EWN and
EWN. It can be seen that in both games the chanciness is higher when the opponents
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7.2 EinStein Würfelt Nicht

(Max, Min)\ game EWN EWN σ

(MC1, MC1) 0.51 0.57 0.028
(MC8, MC8) 0.62 0.68 0.025
(MC64, MC64) 0.71 0.76 0.022
(MC512, MC512) 0.79 0.84 0.015

(MC1, MC8) 0.44 0.53 0.023
(MC1, MC64) 0.35 0.41 0.020
(MC1, MC512) 0.30 0.40 0.017

(MC8, MC1) 0.43 0.47 0.021
(MC64, MC1) 0.33 0.35 0.018
(MC512, MC1) 0.24 0.32 0.017

(MC512, MC1024) 0.82 0.85 0.013

Figure 7.4: Chanciness of EWN and EWN for different agents (100 matches per value). For
each row the larger standard deviation is given.

are more skilled and higher when the players are closer to each other in strength. The
chanciness of EWN is consistently higher than the chanciness of the original game EWN.
We propose that the lack of movement choices in our variant lessens the influence of the
players and thus makes for a more chance-dependent game. The least chanciness is found
for matches between agents of greatly differing skill (MC1, MC512). This can be explained
by a high value for the match expectation ME . The table also shows a consistently higher
chanciness for matches in which the weaker agent takes the first move rather than the sec-
ond move. This can be explained by the different values of ME as explained in Section 5.1.

Each data point in Figure 7.4 is the result of 100 simulation matches for the respec-
tive agents. The combined simulations required about 1000 CPU hours (1GHz Opteron).
The high resource requirements when compared to our measurements for the game of
PaCRaWa can be explained by the increased complexity of EWN and of the Monte Carlo
Agents (especially those with high k).
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8 Relevance of Chanciness for Human
Agents

In the preceding sections we have introduced our concept of chanciness for games played
by computer agents. What relevance does this concept have for matches between humans?

This difficult question has philosophical and practical aspects. Is the expected result
of a game between human agents and thus the relative positional value (Section 4.3)
well defined? The answer to this philosophical question ultimately depends on one’s
interpretation of probability [Haj 2009].

One important interpretation is the frequentist interpretation. It defines probability as
the relative frequency of an event for a large number of trials. A game between humans
cannot be repeated because the agents change as they learn from previous games. For that
reason our definition of chanciness is meaningless for human agents under a frequentist
interpretation of probability.

Another influential interpretation of probability is called Bayesian Probability (also
Bayesianism). This interpretation defines probability as the “degree of belief” of rational
agents and assigns probability to repeatable as well as to non-repeatable events. This
interpretation gives meaning to relative positional values for human agents and hence to
our definition of chanciness when applied to matches between human agents.

An equally pressing issue is the matter of computability of chanciness for human agents.
Given a game G and a pair of human agents X ,Y, can we discover the chanciness C(G,X ,Y )
with an algorithm that uses the results of matches involving X and Y?

As in the case for computer agents we should not expect an exact calculation of chanci-
ness for most games. We therefore rephrase the question: given a game G and a pair of
human agents X ,Y, can we approximate the chanciness C(G,X ,Y ) with an algorithm that
uses the results of matches involving X and Y?

As humans play much slower than computers, are less willing to repeat games and
generally learn while they play, direct mass simulations (as with computer agents) can be
ruled out. Instead, we suggest an indirect approach: if we had access to computer agents
U,V that played very similar in style to our human agents X and Y, we could approximate
chanciness for these computer agents. C(G,U,V ) would arguably be an approximation for
C(G,X ,Y ).

Of course, a general approximation of “style” is in itself a daunting task. If taken to the
extreme this could be translated into passing the Turing Test [Tur 1950]. In fact, in an
earlier version of his famous test, Turing explicitly talks about comparing the playing style
of humans and machines for the game of chess [Tur 1948].

We conjecture that for some games it is sufficient to approximate the playing strength
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of human agents to approximate their style. We would consider an approximation of style
sufficient, if matches between the computer agents U,V covered similar regions of G’s
game tree as matches between the humans X ,Y. How this similarity should be defined is
an open question. It should somehow involve the distribution of chance nodes and their
potential influence. Games for which chance nodes are distributed homogeneously in the
tree would then automatically fulfill the condition of match similarity.

When faced with such a homogeneous game G, we would measure the playing strengths
of the humans X in G by conducting a limited number of matches between X and computer
agents of different strengths. We then pick a computer agent U that matches the strength
of X (and likewise a computer agent V that matches the strength of human Y ). We would
then take C(G,U,V ) as an approximation for C(G,X ,Y ).

While we have no clear concept of homogeneity, we can construct games in which equal
playing strength does not imply equal style (and equal chanciness). As an example, con-
sider a hybrid of chess and backgammon: The first move that is taken is a decision whether
chess or backgammon should be played. Obviously the tree of this game is not homoge-
neous as it has a chess subtree and a backgammon subtree which are quite different in
their distribution of chance nodes.

The move of the first player decides whether the chess- or the backgammon-subtree is
used. Given agents with the right combination of skills, this first move decision is inde-
pendent of playing strength and only a matter of “style”. Yet, the first decision determines
whether the influence of chance for the match will be zero (chess) or non-zero (backgam-
mon). Fortunately, common games appear to be far more homogeneous in this regard.
Another way to increase the representativeness would be to rate actual human matches
(e.g. from tournament records) with the help of computer agents.

Eventually we wish to use chanciness to automatically compare games that are played
by larger groups of agents (e.g. buyers of board games). This forces us to generalize
from particular agents to larger groups. We point to a list of games that were played by
general1 computer agents (based on Monte Carlo methods).

Würfelbingo [Wue 2007] Agents match the playing strength of average human players.
Group trials by this author indicate indistinguishability from equally skilled humans.

EinStein würfelt nicht Agents match the playing strength of average human players.
Monte Carlo agents played against humans on the game server www.inetplay.de from
2005 to 2008. User feedback indicates indistinguishability from human style.

Gelb Voran [Alt 2005] Agents match the playing strength of advanced human players.
Personal experience by this author suggests indistinguishability in style from human
play.

Seasons of the Sun [Alt 2007] Agents match the playing strength of advanced human
players. Reports from various players indicate indistinguishability in style from hu-
man play.

1Not tuned to the specific properties of a game.
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8 Relevance of Chanciness for Human Agents

Hex [Hei 1942] Agents play considerably below top human levels. They displayed a ten-
dency to play obvious losing moves that only prolong the match (“chains of resig-
nation” [Gue 2008]). This assessment only refers to a plain UCT algorithm. Various
heuristics have been successfully combined with UCT [Hay 2009].

Big Balls [AL 2007] In group trials by the author, agents played below average human
levels. This allows distinguishing playing style for a large group of humans.

Based on these examples, approximating the playing style of casual game players with
general game playing agents of sufficient strength appears plausible to us.

Therefore, we think that the concept of chanciness is useful in computer-aided game in-
venting. Althöfer lists several game features that are amenable to automatic evaluation:
game length (average and maximum), drawing quota, balancedness, and deepening pos-
itivity (the impact of search depth on playing strength) [Alt 2003]. Browne adds further
features such as rule complexity, convergence, and drama 2 [Bro 2008]. We add chanciness
to this list of features for automatic game evaluation.

2Convergence measures the trend in the number of (good) move choices as a match progresses. Drama
measures how well agents can recover from self-perceived disadvantageous positions.
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9 Conclusions and Open Problems

We have defined the chanciness of a non-deterministic 1 perfect-information zero-sum
game in extensive form that is played between two specific agents. This definition is
based on the relative influence of chance for specific matches of that game by those same
agents. We have approximated those chanciness-values for exemplary games played by
computer agents.

The chanciness of a game G for some agents X ,Y is a real number from the interval [0,1].
It is close to 1 if the influence of chance on the outcome of the game is high. In this case,
G played by X and Y is a game of chance. The chanciness is low or close to zero for games
where chance has little influence on the game result. In that case, G played by X and Y is
a game of skill. The relative influence of chance can be used to analyze specific matches of
a game. If the relative influence of chance is low, the match result should be attributed to
the skill difference of the agents or to the inherent unfairness of game G.

A necessary condition for the calculation of chanciness is the (frequent) repeatability of
games between the agents. This does not exclude the use of learning agents as long as
those agents can be reset to a previous internal state. As human agents can neither be
reset nor do they tolerate many repeated games, chanciness can not be computed directly
for human agents.

For computer-aided game development, the existence of repeatable automatic players
can be assumed. The calculation of chanciness aids in the process of game inventing when
adjusting the role of chance in a game. If, for example a game inventor wishes to reduce
the influence of chance in one of his invented games, he can compute the chanciness for
various rule variations and some set of agents. He can then discard those rule variations
which do not lower the chanciness value.

Outside of computer-aided game development, we see chanciness and the relative influ-
ence of chance as a tool for game appreciation and as a stepping stone to mathematically
founded game legislation.

An open problem of our method is the resource requirement for approximating rela-
tive positional values. The Algorithm described in Appendix B might be further improved
through the use of hash tables. Measuring the variance during approximation would allow
us to cut off some simulations while maintaining overall accuracy. It would be interesting
to compare our results to the RS-values of Borm and Dreef for a large number of games.
Since our objections to RS were mostly on theoretical grounds, the results could still agree
in many cases.

1Deterministic games are a special case of non-deterministic games [Now 1996]. Their chanciness is always
zero.
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9 Conclusions and Open Problems

Chanciness can be calculated for one-player games (puzzles) by modeling them as zero-
sum games against a passive opponent. Additional research is undertaken to generalize
the concept of chanciness to other game models:

Games with more than two players. These games require a vectorial representation of
positional values and influence. Furthermore, these games may force an agent to
select among moves which are of equal value for him but differ in their influence on
his opponents. It may be appropriate to attribute such influence to chance.

Non-zero-sum games. These games can be mapped onto zero-sum games with an addi-
tional player and present all the challenges of games with more than two players.

Games in normal form (matrix games). Players typically employ randomized (mixed)
strategies. This gives an additional source of chance which has to be taken into
account.

Sequential games with imperfect information. Players have to make educated guesses
regarding the game state they are in. The unpredictability of some game state as-
pects is from their perspective a form of randomness. This should be reflected in a
generalization of chanciness.

As we continue to explore these questions, we expect that the concept of relative positional
values will be useful as it is easily applied to a large class of games with any number of
players.
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Part II

Chanciness and Controllability
of N-Player General-Sum Games
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10 Introduction

Games are traditionally classified as games of chance, games of skill, or games with mixed
characteristics [Par 2008]. As was already explained in Part I of this thesis, the desire for
such a classification stems from various sources:

• Many states have laws to regulate gambling, in other words, playing games of
chance with money at stake. It is then up to legislators and lawyers to decide
which games are within the scope of such laws. In Germany, the gambling law
“Glücksspielgesetz” defines games of chance [Sta 2007]. According to this law a
game of chance is characterized by offering monetary (or equivalent) rewards and
the extend of these rewards depends fully or mostly on chance. The term “mostly”
is not elucidated. This distinction becomes even less clear when the accumulated
outcomes of numerous game rounds (matches) are considered. When the outcome
of a single match depends even a tiny bit on skill, the central limit theorem may be
used to argue that the accumulated result of a sequence of matches is determined
mostly by skill [Alo 2007]. The controversial nature of the skill / chance distinction
is apparent from US-American court rulings regarding poker [BDS 2002]. Poker
was ruled a game of skill in Pennsylvania [Cyp 2009] and a game of chance in North
Carolina [Bur 2007]. This contradiction is arguably caused by the vague distinction
between games of chance and skill.

• Naturally, the people who play games are interested in matters of chance and skill.
Some players prefer games of chance over games of skill, while others have opposite
tastes. In this context, a precise classification of games may not be important. How-
ever, the results of individual matches lends itself to analysis. Having won a game
with a chance component, we may ask ourselves whether our victory was due to our
skillful moves or simply caused by a string of lucky dice rolls [EL 2009]. The answer
to this question is central to the feeling of accomplishment of the players and thus
to the enjoyment of the game.

• A third group of people who concern themselves with the balance of chance and skill
in games are game inventors. When designing a game for a particular audience, the
inventor may wish to realize a particular level of chance and skill. Unfortunately,
it is hard to measure the effects that subtle rule variations have on this balance.
In the emerging field of computer-aided game inventing [Alt 2003, Bro 2008] com-
puter simulations are used to measure game attributes. This reduces the need of a
game inventor to find human play testers. Measuring the extent in which a game
is influenced by chance or skill then requires a mathematical clarification of those
concepts.
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In Part I of this thesis we looked at the problem of rating two-player zero-sum games for
their dependency on chance and skill. In this part, we expand our scope to include games
with an arbitrary number of players and with generalized scoring rules. In the course of
our analysis we will be concerned with the following questions:

• What assumptions underly such a analytic rating of chance and skill?

• How can the different influences on a game be quantified?

• How can those influences be compared and interpreted?

• What are the practical limits to such an analysis?

We introduce the concepts of chanciness and controllability to describe the relative im-
pact of chance and player actions. By applying these concepts to matches (single rounds
of play)1 as well as to games we obtain measures on a [0,1] scale.

In Chapter 11 we discuss previous works on formalizing the extent of chance and skill
in games. We introduce terms and concepts for our discussion in Chapter 12. Our con-
cepts of chanciness and controllability rest on the analysis of individual matches. To what
extent did player moves and random events influence the match result? We deal with the
subject of influence in Chapter 13. Based on our notion of influence we define the concept
of chanciness in Chapter 14 and the concept of controllability in Chapter 15. These defi-
nitions refer to the participating agents. In Chapter 16 we deal with the interpretation of
games that have at the same time low chanciness and low controllability. In Chapter 17
we justify the dependency of our measures on the participating agents. Restrictions on
resource use and restrictions on knowledge of the agents necessitate the approximation
of our proposed measures. Chapter 18 deals with these issues. In Chapter 19 we ana-
lyze chanciness and controllability for two parameterized game models. In Chapter 20 we
present approximations of chanciness and controllability for the game “EinStein würfelt
nicht!” [Alt 2004a] and for variants of this game. We summarize our results in Chapter
21.

1Our use of the term match should not be confused with a tournament. The appropriate term in German
would be “Partie”. The terms match and game are defined in Chapter 12.
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11 Previous Work

The scholarly analysis of games has been mostly focused on solution concepts for the
class of two-player zero-sum games. The quantitative analysis of the chance/skill distinc-
tion has received comparatively low attention. In this chapter we discuss a selection of
previous works that are closely related to our topic

11.1 Parlett 2008

A good introduction to the many facets of chance and skill in games is given by David Par-
lett [Par 2008]. He wants to contribute to the classification of games, game inventing and
game appreciation. Parlett frames the chance/skill distinction as a question of uncertainty
(or unpredictability). He then discusses various sources of uncertainty and lists skills that
help to control uncertainty1.

As major sources of uncertainty he lists randomization (with the prime example of
dice rolling), incomplete information (e.g. hidden cards), imperfect opponent modelling
and difficulties in foreseeing the future even when the mechanisms are known (chaotic
systems).

He also mentions the role of subjective perception in evaluating the uncertainty/con-
trollability of a game. Parlett notes that games could be rated on a continuous scale that
measures the uncertainty of their outcomes. However, he does not attempt a quantitative
analysis of uncertainty.

11.2 Browne 2008

Cameron Browne is leading the field in quantifying aesthetic game properties[Bro 2008].
His work focuses on players’ perceptions in 2-player zero-sum games without chance. He
defines and calculates 57 game properties such as Balance, Drawishness, and Depth. Two
notable properties of his are Uncertainty [Bro 2008, 113] and Control [Bro 2008, 123].
Uncertainty quantifies the difficulty of the players in foreseeing the result of the game. His
property Control describes the ability of one player to reduce the number of his opponent’s
viable moves.

Browne uses the game properties developed by him to automatically rate the quality
of games and even direct automated evolutionary search in a subspace of combinatorial

1Parlett uses the term “controllability” as an opposite to uncertainty. His uses differs from our concept of
controllability as defined in Chapter 15. In Parlett’s work “controllability” is highest if the outcome of the
game is most certain while for us controllability is high if a player has a strong influence on his result.
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11.3 Borm, Dreef and Genugten

games. Using a sample population of human game players he demonstrates a correlation
between his mathematical definitions and human perception.

11.3 Borm, Dreef and Genugten

The question whether games should be legally classified as games of skill or games of
luck has been directly addressed by Borm, Dreef, and Genugten (hereafter, collectively
BDG) [BvdG 2001, DBvdG 2004, Dre 2005]. They developed a measure called Relative
Skill (RS) to place zero-sum games on a [0,1] scale. Using this measure they give ratings
for the games of Roulette (0.0004), Black Jack (0.006), poker variants (0.4) and various
coin games (e.g. 0.33). Games that allow for skillful play receive a higher rating of RS
than games in which chance dominates the result. Thus, RS expresses the opposite idea
of chanciness and is closely linked to our question.

The measure of BDG is based on three types of playing agents: the Optimal Player,
the Fictive Player, and the Beginner. The Optimal Player player plays according to the
expectimax algorithm [SLB 2008, 127]. The Fictive Player is assumed to know before-
hand the outcome of all chance events. Furthermore, the Fictive Player is assumed to
possess complete information about the game state. For this player type all games reduce
to deterministic games of perfect information and he can thus use the simpler minimax
algorithm [SLB 2008, 125]. The Beginner is intended to mimic a human player who has
a very limited grasp of the game. Dreef [Dre 2005] recommends2 that the playing style
of the Beginner is to be modelled in one of three ways depending on what is called “the
structure” of the game.

• random move selection

• quantitative analysis of human beginners playing style

• using domain expert knowledge to describe how a beginner would play

Games with more than two players are reduced to multiple two-player cases by assuming
that one player faces a coalition of all the others.

The measure RS is obtained by comparing expected game rewards of the three Agent
models.

RS =
rewardOptimal− rewardBeginner

rewardFictive− rewardBeginner
(11.1)

RS can be understood as the relative advantage of the Fictive Player over the Optimal
Player when each is faced with a Beginner. If beforehand knowledge of chance events
gives little advantage while the skill difference between Beginner and Optimal Player is
large, than the game will receive a high value of Relative Skill.

2In [BvdG 2001] the definition of the Beginner remains rudimentary: “ It is our experience that agreement
can be obtained as far as it concerns the type beginner”.
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11 Previous Work

11.4 Erdmann

The characterization of chance for the case of two-player zero-sum games is treated by
Erdmann [Erd 2009]. This work is reproduced verbatim in Part I of this thesis. In this
section we highlight the key differences between Part I and Part II. Differences between
this thesis and the work of other authors will be discussed in the following section.

• The class of games under consideration is expanded from two-player zero-sum games
to general-sum games with an arbitrary (but fixed) number of players3. One conse-
quence of this is the need for multiple values to evaluate a game state (one value for
every player). Consequently, the influence of a move must also be described with
multiple values (influence on every player’s value).

• The chanciness measure from Part I is supplemented with the new measure control-
lability. This additional measures reflects the observation that some games have low
chanciness, yet should not be regarded as games of skill (for some or all players).

• New methods of approximating chanciness (and controllability) are discussed.

• The chanciness of a game is discussed in reference to a population of agents, while
Part I only discusses pairs of agents.

11.5 Differentiation from Previous Work

Our main goal is the quantitative analysis of games and individual matches in regards to
chance and skill. In contrast to the multiple sources of uncertainty given by Parlett, we
focus on explicit randomization by dice and similar means.

Compared to Browne we analyze less properties, yet we consider a hugely expanded
class of games. Whereas Browne only discusses two-player zero-sum games, we look
at games with an arbitrary number of players and without restrictions on the scoring
function. The work of Browne required speedy computation of his game properties to be
useful within a genetic algorithm. In contrast, we are more interested in the theoretical
background of our game properties and do not emphasize speed.

The goals of BDG are closely related to our own. We wish to improve on some of the
limitations exhibited by their measure of Relative Skill (RS).

First of all, our work leads us to the conclusion that an assessment of chance and skill
for a given game depends strongly on the particular behavior of the playing agents. The
measure relative skill is based on only three agents and thus can only give an incomplete
picture.

Secondly the measure RS depends on a notion of optimality for their Optimal Player. Op-
timal behavior is well defined for two-player zero-sum games. The Minimax-Algorithm as
well as the Expectimax-Algorithm [Zer 1913, vN 1927, SLB 2008] conform to the concept

3See Chapter 12.

34



11.5 Differentiation from Previous Work

of subgame perfect equilibrium [SLB 2008, 121]. However, in the context of general-sum
games the optimality of this concept is disputed4.

Thirdly, the concept of the Fictive Player allows the creation of games, that receive
ratings of RS which contradict core intuitions about games of chance and skill. For an
example consider the game of Lottery Chess in Appendix A).

Also, the work of BDG does not cover the subject of analyzing individual matches. Our
work on the other hand bases game measures upon the analysis of individual matches.
While game measures are the ultimate goal, we consider match measures worthy of anal-
ysis in their own right.

Another important difference between this thesis and the work of BDG lies in a different
concept of skill. BDG base their measure of Relative Skill on the skill difference among
players. In contrast, our related measure of controllability is based on the variability of
play by individual players. Our measure is able to describe the changing perception of a
player as he masters a game’s strategy.

We take the dependence of RS on modelling the Beginner as a valuable pointer. As-
sumptions about the game playing agents are intrinsic to the judgement about the relative
impact of chance and skill on game outcomes. With our proposed measures of chanciness
and controllability we make these assumptions more explicit. We point out methods for
analysing games where optimal play is yet unknown. Furthermore, we avoid the contra-
dictions that can be constructed with the help of the Fictive Player.

4The Centipede Game [MP 1992] is often used to demonstrate that players who violate equilibrium play
obtain higher payoffs.
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12 Terms and Concepts

12.1 Game Model

In this chapter, we introduce the necessary terms and concepts for our discussion of chanci-
ness and controllability. The starting point is the central term game. For our game model
we use the extensive form with chance moves [SLB 2008, 117]. An n-player1 game G
is represented by a finite rooted tree as in Figure 12.1. Nodes of the tree correspond to
game states. We will use the terms node, state and position synonymously. Edges of the
tree correspond to state transitions which we will call moves. Edges are directed from
a parent node to its child node, thus moves are always directed away from the root and
towards the leafs.

Player X node

Chance node

terminal node

X

u v w
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Figure 12.1: An exemplary game with three players 1,2,3.

The leafs of the tree represent terminal game states and every leaf t is labeled with an
n-tuple of real numbers Result(t) = (r1,r2, . . . ,rn). Each tuple represents the rewards for the
players when a match ends in that state. For a match ending in in state t with the result
Result(t) = (r1,r2, . . .rn), player i receives a reward of ri. We will use the terms reward,
result and payoff synonymously.

The inner nodes represent non-terminal states that require a move. These nodes are
either marked as player nodes or as chance nodes. A player node is further labeled with
an index i from {1 . . . n} to represent a node in which a decision by player i is required.

1The term n-player game is sometimes used to refer to a specific game that may be played by different
numbers of players. We use the term to denote a game that is be played with a fixed number of n players
(n ∈ N).
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12.1 Game Model

Chance nodes on the other hand represent game states in which the successor state is
selected by a random event such as the roll of a dice or the drawing of cards from a
randomized deck. Correspondingly, the edges leading to child nodes are either called
player moves or chance moves. Chance moves are further labeled with their respective
probabilities. For every chance node s we define C (s,s′) as the probability that chance
will move from s to the child of s′. Without loss of generality we require that C (s,s′) is
positive.

We will repeatedly employ the game from Figure 12.1 as an example and refer to it as
Gexample.

Using this game representation, we discuss the class of games with the following prop-
erties:

Non-deterministic: The game may contain chance nodes. We treat deterministic games
as a special case of non-deterministic games.

Finite: The game tree is finite in breadth as well as depth.

Arbitrary number of players : The game has a fixed number of n players with n ∈ N.

Perfect information: All players know the history of past moves and the exact game state
they are in [SLB 2008].

Complete information: All players know the game’s rules including the results (payoffs)
of all players for every terminal state [SLB 2008].

Sequential moves: Players move in sequence. Games with this property are also known
as dynamic games.

General-sum: There are no constraints on the sum of the payoffs for each terminal node.
In contrast to constant-sum games where the payoff sums for all terminal nodes
must sum to the same constant C. For C = 0 these games are called zero-sum games.
General-sum games which do not meet the zero-sum constraint are also referred to
as non-zero-sum games.

Our model of game play is based on the terms agent, population, lineup, and match.
Matches for a game are played by a lineup of agents taken from a finite population Π. We
will explain all these terms in the following sections.
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12 Terms and Concepts

12.2 Agent Model

Our model of an agent is meant to represent humans as well as computer algorithms
(bots). Since we are not interested in how our agents form their move decisions, we can
use a very simple agent model. It is sufficient that the agents are somehow able to select
their move from the finite set of available moves. To reflect our ignorance, we use a
stochastic model. For every game G let SG denote the set of all possible states of G. Let
Si

G ⊆ SG denote the set of all states in which player i has to move. For every game state
s ∈ SG let Children(s) = {c1,c2, . . . ,cm} denote the set of states that can be reached by one
legal move. An agent A capable of playing G as player i is a function from Si

G×SG to the
real numbers. A(s,s′) = p is the probability that agent A will move from state s to the child
node s′. The probabilities given by A must meet the following constraint:[

∑
c∈Children(s)

A(s,c)

]
= 1, A(s,c)≥ 0 (12.1)

Deterministic agents are a special case of stochastic agents. For simplicity’s sake, our
agents only consider the current state s when selecting their move. Since our model is a
proper tree, every node has a unique history and therefore knowledge about past decisions
can be included in our agent model2.

Figure 12.2 shows the move probabilities for three agents A1,A2,A3. In our example
each agent Ai plays the role of player i. Our agents are defined as follows:

A1 := {((s0,s1),0.25),((s0,s2),0),((s0,s3),0.75)}
A2 := {((s1,s4),0.8),((s1,s5),0.2),((s3,s6),0.8),((s3,s7),0.2)}
A3 := {((s7,s10),0.5,((s7,s11),0.5)}

Our agent model only supports a limited representation of opponent modelling. By
our assumption of perfect information, agents know the history of moves during a match.
This knowledge could be used to build a model of opponent behavior. However, the value
of A(s,s′) is independent of the lineup in which A plays (more sophisticated opponent
modelling could retain knowledge about other agents across matches).

We furthermore assume that our agents are interested in maximizing the expectation
of their payoff. They are indifferent regarding the payoffs awarded to other players inas-
much as these are decoupled from their own rewards. This assumption only refers to the
intentions of the agents and not to their capabilities!

Actually, human players sometimes appear to be interested in the results of other play-
ers. Humans may be jealous of other player’s rewards and try to diminish them even to
the point of hurting their own payoff. In contrast, humans may also seek cooperation in
ways that are detrimental to their own payoffs. Such attitudes can be expressed in our

2Two chess positions with the same board and different histories would be represented by two different
nodes.
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12.3 Population, Lineup and Match
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Figure 12.2: The tree of Game Gexample with move probabilities for three exemplary agents
A1,A2,A3. Agent Ai performs the role of player i. Each node is labeled for
reference.

model by changing the payoff structure of the game. Malevolence among the agents cor-
responds to a zero-sum payoff structure while the intent on cooperation can be expressed
with non-zero-sum payoffs.

12.3 Population, Lineup and Match

We presume that there exists a set of agents Π. We call this set the population. From this
set Π, n-tuples of agents are taken. We call such a tuple L = (A1,A2, . . .An) a lineup.

A match g of game G is given by a pair g = (L,P). L = (A1,A2, . . .An) is a lineup and the
agent Ai takes on the roles of player i. An agent who plays as player i is responsible for
selecting the successor node for any nodes marked with index i. We use the term “player”
to describe an agent who has been assigned a player role (an index from {1,2, . . . ,n}).
P = (s0,s1, . . . ,sk) is a sequence of nodes. s0 is the root node of game G, sk is a leaf node
and for every i, node si+1 is a child of node si. The sequence P thus forms a path of nodes
(game states) through the tree that leads from the root to a leaf node.

A match g of Game G always starts in the root node of the game tree. However, accord-
ing to our game model, a subtree of G rooted in state s is also a game (a subgame of G).
Accordingly, we can discuss matches that are started in any state s of G (matches in the
subgame of G). We call such matches partial matches.

We further assume that there exists for every n-player game G a sampling process that
yields lineups from the population Π. This unspecified process yields a probability mass
function Ψ : Πn→ [0,1] over the set of n-player lineups. Ψ(L) then gives us the probability
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12 Terms and Concepts

that a match with the lineup L will be played.

Using the terms defined above, we can describe matches for a wide selection of board
games such as Chess, Backgammon, Pachisi, Ludo and Roulette. Our confinement to games
of perfect information requires that all players may know the exact history of moves lead-
ing to a games state and can thus uniquely identify the game state they are in. This de-
mand excludes many card games such as Poker or Black Jack. Some card games, such as
Concentration (Memory, Pairs) can be modeled as games of perfect information when using
the appropriate probability distributions to represent the uncovering of never-before-seen
cards.

Care must be taken when modelling some of these games as a tree of finite depth.
While all games have finite length in practice, some games such as backgammon allow
for arbitrarily long matches3. One solution lies in modifying the rules slightly, similar to
the 50 move rule[FID 2005] in tournament chess (without this rule, chess would also allow
matches of arbitrary length). For the practical application of our game measures, it is
sufficient that matches terminate eventually (see Chapter 18).

12.4 Confined Perspective

The analysis of influence in Chapter 4 was simplified by the fact that game positions could
be rated with a single number. For general-sum games with n players, game positions
must be rated with n-tuples. Our method for reducing the complexity of the general case
lies in temporarily confining our perspective to a single player index (player role).

We call this player i the affected player. The remaining n−1 players will be called other
players. Figure 12.3 shows our example game Gexample from Figure 12.1 reduced to the
perspective of player i = 2. When using the confined perspective, all agents are assumed to
behave as in the real game. However, each positional value is reduced to the ith position
of the n-tuple.

12.5 Probabilistic modelling of Human Agents

Our agent model assumes that agents can be described in terms of move probabilities.
One might question the validity of this approach to describe human agents. The answer
to this question is ultimately a matter of philosophy. It hinges on the chosen interpretation
of probability.

One important interpretation is the frequentist interpretation [Haj 2009]. It defines
probability as the relative frequency of an event for a large number of trials. This def-
inition is difficult to apply to the act of deciding on a move. Such a decision depends on
many elusive factors, some of which will shift over time as the human player is learning
and adapting.

3However, it has been proven that backgammon ends with probability 1 [McC 1994].
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12.5 Probabilistic modelling of Human Agents
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Figure 12.3: The game Gexample reduced to the perspective of one player 2.

Another influential interpretation of probability is called Bayesian Probability
(also Bayesianism) [Haj 2009]. This interpretation defines probability as a “degree of
belief” of rational agents and assigns probability to repeatable as well as to non-repeatable
events. This interpretation of probability can be used to justify the application of our
model to human agents.
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13 The Concept of Influence

13.1 Introduction

The fact that state laws distinguish between games of chance and games of skill suggests
that people have at least some criteria for accomplishing such a classification. We propose
that this intuitive understanding is based on a concept of influence (or synonymously
importance, impact). For a game (with perfect information) to qualify as a “game of
chance”, it must involve some sort of randomizing device and that device must have an
influence on the game results. Likewise to be called a “game of skill” a game must allow
for players to make move decisions and those decisions must have an influence on game
results. The problem of correctly classifying a game can than be restated as the problem
of comparing the relative influences of chance and skill. For a scientifically meaningful
comparison we must develop a rigorous definition of influence.

In Section 13.2 we look at the assumptions underlying the concept of influence. At the
end of that section we declare the fundamental axiom crucial to this thesis. In Section
13.3 we give a quantitative definition of the influence of a move. We use the influence
of individual moves in Section 13.4 to discuss the combined influences of moves on the
result of a match.

13.2 Fundamental Assumptions

To understand influence we must distinguish between the game G and a match g of G that
took place between specific players. When talking about the game G we actually discuss
possible (or potential) influence. When we say G is a “game of chance”, we are saying, a
typical match g of G is strongly influenced by chance. Likewise, we would call G a “game
of skill” if it is influenced by the players. However, not every match plays out the same.
If one player gets very lucky, he may win without effort. In another match, the influence
of dice rolls may favor both players equally and the result is then decided by the skill of
the players. Therefore, we will define influence for matches g of a game G. After we have
understood how chance and skill affect matches, we generalize our findings to talk about
the properties of G. The assumption behind this approach can thus be explicitly stated:

Assumption 1 The properties of a game are determined by the properties of its matches.

In the preceding paragraph we have used the phrase “influence of dice rolls“. We turn
this manner of speaking into another assumption:
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13.2 Fundamental Assumptions

Assumption 2 The influence of chance on a match is determined by the influence of chance
moves taken during that match.

And accordingly:

Assumption 3 The influence of the players on a match is determined by the influence of
player moves taken during that match.

In Section 15.4 we will discuss subtle distinctions between “player influence” and “skill”.
In the conclusion of Part I (Chapter 9) we suggested that chance moves might not be the
only source of chance influence. In Section 16.1 we will reexamine this suggestion and
justify Assumption 2.

13.2.1 Influence Depends on the Game Tree

Based on our three assumptions from the preceding section we can already draw some
conclusions regarding the classification of games. Moves by chance or skill can only be
taken during a match if they appear in the game tree.

Figure 13.1 shows 5 small game trees. Game 13.1 a) does not contain any chance
moves. By Assumption 2, chance cannot influence match results and therefore Game a) is
not a game of chance. Using the same argument we arrive at the obvious conclusion that
Chess and Go are not games of chance. Similarly, by Assumption 3 game 13.1b) cannot be
a game of skill, since it contains no player moves.

What about the games 13.1c),d) and e)? These “games” contain neither chance nor
player moves. If we accept that these trees constitute games, then by our assumptions
they are are neither games of chance nor of skill.

Player X node

Chance node

terminal node

X

u v w

1
c)

-1
d)

2 -2

e)

1 -1 1 -1

a) b)

0.5 0.5

1

Figure 13.1: Small games. Games a)-d) are single-player games and game e) is a game of
two players.

The common understanding of chance and skill as suggested by Parlett [Par 2008], puts
games one a one-dimensional scale with complete chance (uncertainty) on one end and
complete skill (controllability) one the other. By our game model and by our previous
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13 The Concept of Influence

assumptions, this scale has no place for games 13.1c),d) and e). We must therefore aban-
don the idea of expression the nature of chance and skill with a single one-dimensional
property. In Chapter 17 we will find that this issue is not confined to the (pathological)
case of games without moves.

13.2.2 Influence Depends on the Players

The classification of games that allow only one type of moves (chance moves or player
moves) is hardly interesting. If we wish to further our understanding of the nature chance
and skill we must look at games that allow for both types of moves. However, there is
quite a difference between games that allow a certain type of move and games which
enforce the occurrence of these moves. As one important consequence of Assumptions 2
and 3, only moves that actually occur during a match can be considered influential.

The game in Figure 13.2 is meant as a thought experiment to illustrate this issue. We call
this game Chess-Or-Coin (CC). The tree of CC is composed of two very different subtrees
(subgames). In a match of CC, player 1 must decide whether play will continue according
to the rules of Chess or whether the result will be decided by the flip of a coin.

Chance node

Terminal nodeu v

Subgame

Player X node
X

1

-1 1 1 -1Chess

0.5 0.5

Figure 13.2: The game Chess-Or-Coin (CC). The left subtree is meant to represent the
complete tree of the game Chess.

For a player who prefers the left subtree, chance moves will never occur and CC will be
a game of skill. For a different player who prefers the right subtree the game will be a
game of chance. The nature of CC therefore depends on the behavior of the players.

While the game CC may appear rather contrived, nothing prevents the creation of games
where different parts of the game tree are influenced to different degrees by chance and
skill. Therefore, the issue of player behavior must generally be considered when discussing
the nature of a game.

13.2.3 Influence Depends on the Values of Game States

By Assumptions 2 and 3, individual moves are considered influential. When we talk about
the influence of moves (player moves or chance moves), we talk about their influence on
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13.3 The Influence of a Move

the match result. However, a single move rarely decides the game. Instead, moves lead to
game states in which a player has improved or reduced chances of “winning” (increased
or decreased expectations for their result). Following our player model, a move has a
desirable influence for a given player if it increases the expected result for that player.
This leads us to our Axiom of Influence:

Axiom 1 Fundamental Axiom of Influence
The Influence of a move from state s to state s′ is the difference between the expected value of
s and the expected value of s′.

The Fundamental Axiom of Influence forms the basis of this thesis1. In the next
section we will use Axiom 1 to quantify the influence of moves.

13.3 The Influence of a Move

By the Fundamental Axiom of Influence (Axiom 1) the influence of a move from state
s to state s′ depends on the expected values of both states. However, Axiom 1 does not
specify how this expected value is to be calculated.

13.3.1 The Prescriptive Approach to the Evaluation of Game States

The evaluation of game states is a central problem of game research [BCG 1982]. The
motivation for this task usually arises from the question of how to maximize one’s result
against opponents who attempt the same. For the class of perfect-information games
with sequential moves, the concept of subgame perfect equilibrium [SLB 2008, 121] (SPE)
is the most prominent answer on how to play a game optimally. This concept allows
the evaluation of game states with an algorithm called backward induction [SLB 2008,
124]2. The positional values assigned by this algorithm are known as minimax values (for
deterministic games) and expectimax values (for nondeterministic games).

We call this approach to the evaluation of game states the prescriptive approach, because
it prescribes how we should play if we want to maximize our results. Under the prescriptive
approach, the value of a game state is defined as the expected result for players who all
play perfectly as prescribed.

13.3.2 The Descriptive Approach to the Evaluation of Game States

In contrast to the prescriptive approach, this thesis defines the descriptive approach to the
evaluation of game states. In the descriptive approach, we presume there exists a de-
scription of how the players behave. The expected value of a state is then based on this
behavioral description. The behavior of optimal agents (according to the SPE) is just one
special case of agent behavior. For this reason, the descriptive approach is more general
than the prescriptive approach.

1 Axiom 1 was implicitly used in Part I of this thesis. .
2This algorithm is defined for two-player games in Section 4.2.
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13 The Concept of Influence

In the real world, a multitude of agents with different behaviors can be observed. These
real world agents rarely play optimal. Even though agents seek to maximize their result,
their behavior often differs from the optimal behavior for at least two reasons:

• Agents lack the resources to determine optimal choices. Human agents as well as
computer agents are generally unable to analyze the complete tree of a game. In-
stead they rely on heuristic shortcuts of different sophistication (counting the re-
maining pieces of a chess position would be a simple example).

The statement that real-world agents fail to play optimally should need no further
justification. However, we wish to mention the amusing example of humans playing
against chicken in the game of Tic-Tac-Toe. In this game optimal play guarantees a
draw. Nevertheless, the trained chickens are said to have lost nine matches out of
270,000 matches played, according to Kinney [Kin 2003].

• Agents know that other agents sometimes do not play optimally. This gives them a
reason do deviate from optimal play in hopes of exploiting their opponent’s weak-
ness. An often mentioned example is the Centipede game. Figure 13.3 shows the
tree of the Four Stage Centipede Game. In this game, the expected result would be
(1,0) (for player 1 and player 2 respectively) according to the prescriptive approach.
However, according to studies by McKelvey [MP 1992] humans reach even higher
expected results by deviating from SPE-behavior.

2

2

1

Terminal nodeu v

Player X node
X

1 0
1

0 2

3 1

3 32 4

Figure 13.3: Game tree of the Four Stage Centipede Game.

Since the descriptive approach gives a more accurate picture of the actual expected re-
wards of real world agents, we use this approach to define the values of game states and
the influence of moves 3. As we have pointed out in Section 13.2.2, the influence of
chance and skill on a game depends on the behavior of the players anyway. Therefore,
the reliance on a behavioral description does not increase the demands upon our agent
model.

3Section 18.2 discuses the consequences of using another approach.
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13.3.3 Relative Positional Values (RPV)

In this Section we define the relative positional value (RPV) of a game state according to
the descriptive approach. The term relative emphasizes that the positional value depends
on the behavior of the agents.

For the n-player game G, the values of all terminal nodes (the leafs of the game tree)
are well defined. According to our game model (Chapter 12) the value Result(t) of such a
terminal game state t is given by an n-tuple of numbers. Position i in the tuple denotes the
result of player i, should a match g terminate in state t. Accordingly, we must differentiate
the values of any game state s for the perspectives of the different players.

The result of player i for a match or a partial match4 that is started in state s and played
by the lineup L can be seen as the realization of a random variable R. When s is a terminal
state the realization of R is the constant value of Result(s)i. Otherwise the value of R
depends on the stochastic behavior of the agents in L and on the stochastic behavior of
chance. We define the RPV as the expected value of R. The RPV Ṽi(s,L) is defined for a
game state s from the perspective of player i in a match played by the lineup of agents L:

Definition 13.1
Ṽi(s,L) := E(R)

Figure 13.4 shows our example game Gexample from the perspective of affected player
2. (This tree was already used in Chapter 12). The lineup L = (A1,A2,A3) consists of the
example agents defined in Section 12.2. Using this lineup the RPV Ṽ2(s,L) are given for
every node s in the tree.

The value state of Ṽi(s,L) can be computed based on the values of the children of s.
Since the values of terminal nodes (leafs) are well defined, we can compute the value of
any state s recursively by starting at the leafs and backing up towards the root. This gives
us the following recursive definition of Ṽi(s,L):

Ṽi(s,L) :=


Result(s)i if s is a leaf

∑
c∈Children(s)

Ak(s,c) · Ṽi(c,L) if player k moves in s

∑
c∈Children(s)

C (s,c) · Ṽi(c,L) if chance moves in s

(13.2)

Here Result(s)i is the match result for player i in the terminal state s.

The RPV defined in Part I (Definition 4.2) are a special case of the RPV defined in this
Section. For the special case of two-player zero-sum games, treated in Part I, there is no
need to differentiate among the player perspectives. Due to the zero-sum restriction on
match results, the equivalence Ṽ1(s,L) =− Ṽ2(s,L) holds for any game state s.

4See Section 12.3.
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Figure 13.4: The tree of Game Gexample reduced to the perspective of player 2 with move
probabilities for a specific lineup L. Each node s is annotated with the RPV
Ṽ2(s,L).

13.3.4 Definition of the Influence of a Move

In the previous Section we introduced the concept of RPV to evaluate game states. Based
on Definition 13.1 we will define the influence of a move m = (s,s′) from state s to state s′.

Definition 13.3 The influence I of move m = (s,s′) from the perspective of player i in a
match with the lineup L is defined as:

I(m,L, i) := Ṽi(s′,L)− Ṽi(s,L) (13.4)

Note that there is no distinction between player moves and chance moves.
This definition of influence is very similar to Definition 4.5 in Part I. Instead of only two

agents we now have the lineup L, an n-tuple of agents. We must also specify a player
perspective i. In contrast to the two-player zero-sum situation in Part I, the positional
values for different players are now generally independent.

One important consequences of using RPV in our definition of influence is this:

Lemma 13.5 “Deterministic moves” always have influence 0.

We call a move m = (s,s′) “deterministic move” for agent A if state s is always followed by
the specific state s′. In other words A(s,s′) = 1.

Proof: Let s be a game state with player k to move and d ∈ Children(s). Let L =
(A1,A2, . . .An) be a lineup such that agent Ak(s,d) = 1 (move (s,d) is a deterministic move
for agent Ak).
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Using Definition 13.2, Ṽi(s,L) (for an arbitrary perspective i) is as a weighted sum of
the values of Children(s).

Ṽi(s,L) = ∑
c∈Children(s)

Ak(s,c) · Ṽi(c,L)

= 1 · Ṽi(d,L) , hence

I((s,d),L, i) = Ṽi(d,L)− Ṽi(d,L) = 0

�

More generally speaking, the absolute influence of a move m = (s,d) decreases when
the probability of being taken p increases. This can be shown by a slight variation of the
above proof:

Let Ak(s,d) < 1 be the probability that agent Ak takes the move m = (s,d). Let A′k be a
second agent who differs from Ak only in the move probabilities for s, such that A′k(s,d) =
q,q > p. We consider the lineup L that contains agent Ak and compare it to the lineup L′

which contains the agent A′k instead of agent Ak.
We note that Ṽi(d,L) = Ṽi(d,L′) since the agents differ only in their probabilities for s.

The RPV of s, Ṽi(s,L) is a convex sum of the value of its children. An increased probability
for move (s,d) means an increased weight for the child d. Thus, the value of Ṽi(s,L′) lies
between Ṽi(d,L) and Ṽi(s,L). Influence is the change in value between s and d thus, the
influence for the move by A′k is lower. �

A player who understands a game position well knows which move he should take in
that position. Consequently, such a move will have a high probability of being taken and
the influence of that move will be low. Thus, the influence of a player move is a good
measure for the interestingness (difficulty) of deciding on that move.

Important: By tying our evaluation function Ṽ to the participating agents, we allow that
a move may have a different influence, depending on the agent who took that move.
While this may seem counter-intuitive, it later allows us to explain why games change
their character once we master them. Once all move decisions in a game are obvious,
we might as well just roll a die instead of playing the game. If the game did not contain
random elements we would probably abandon it at this point.

13.4 Influences in a Match

By Assumption 1 we will derive the properties of a game G from the properties of matches.
In this section we lay the groundwork for the analysis of a match.

Let g = (L,P) be a match of an the n-player game G. It was played by the lineup
L = (A1,A2, . . . ,An). During the match g the game states P = (s0,s1, . . . ,sk) were visited in
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13 The Concept of Influence

sequence. We will analyze g from the perspective of player i.
By our model assumptions from Chapter 12, player i only cares about his own result.

This allows us to focus our discussion on the influence of moves from the perspective of
player i. We call this player the affected player.

13.4.1 The Combined Influence of Moves

We have previously defined the influence I(m,L, i) for a single move m from the perspective
of player i in a match with the lineup L. Since a match usually consists of more than one
move, we must be able to reason about the combined influence of those moves.

In this section we introduce the concept of a move-sequence and show that the influence
I is additive when applied to move-sequences.

Definition 13.6 For a match g = (L,P) with the sequence of states P = (s0,s1, . . . ,sk) For
0≤ x < y≤ k we call the pair (sx,sy) the move-sequence from state sx to state sy.

The move sequence (sx,sy) represents the combination of the moves
((sx,sx+1),(sx+1,sx+2), . . . ,(sy−1,sy)) by sequential execution.

Definition 13.7 For two move-sequences of the following form, we define the addition (+)

(sx,sy)+(sy,sz) := (sx,sz) (13.8)

Definition 13.9 We define the influence of a move-sequence from the perspective of player
i in a match with the lineup L:

I((sx,sy),L, i) := Ṽi(sy,L)− Ṽi(sx,L) (13.10)

This definition of influence directly mirrors Definition 13.3.

Lemma 13.11 The influence I applied to move-sequences is additive.

Proof:

I((sx,sy)+(sy,sz),L, i) = I((sx,sz),L, i)

= Ṽi((sz),L)− Ṽi((sx),L)
= Ṽi((sz),L)− Ṽi((sy),L)+ Ṽi((sy),L)− Ṽi((sx),L)
= I((sx,sy),L, i)+ I((sy,sz),L, i)

�

In the following section we use the additivity of move-sequences to interpret the result
of match g.
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13.4.2 The Match Equation

Let match g = (L,P), for the n-player game G be given by a lineup of agents
L = (A1,A2, . . . ,An) and a sequence of game states P = (s0,s1, . . . ,sk). Let m j = (s j,s j+1)
denote the jth move in P.

The additivity of influence for move-sequences allows us to express the result of match g
as the following sum:

Lemma 13.12

Ṽi(sk,L) = Ṽi(s0,L)+
k−1

∑
j=0

I(m j,L, i) (13.13)

We call this equation the match equation.
Proof: Every move m j is also move-sequence. Thus we can apply Lemma 13.11.

Ṽi(s0,L)+
k−1

∑
j=0

I(m j,L, i)

= Ṽi(s0,L)+ I(

[
k−1

∑
j=0

m j

]
,L, i)

= Ṽi(s0,L)+ I((s0,sk),L, i)
= Ṽi(s0,L)+ Ṽi(sk,L, i)− Ṽi(s0,L, i)
= Ṽi(sk,L, i)

�

This match equation “explains” how the combined influence of all moves leads to the
result of match g.

The term Ṽi(s0,L) is special because it is not the influence of a move but rather the
value of the starting position. We call Ṽi(s0,L) the match expectation for the perspective
of player i (MEi). Since all matches of a game start in the same state s0, the value of MEi

depends only on the lineup L.
The match expectation can well be the dominant term of the match equation. We will

therefore include it in our comparison of the different influences in the following chapter.
Later, in chapter 16, we will discuss the interpretation of MEi in detail.

13.4.3 Sources of Influence (SI)

In the previous section we have defined the influence I(m,L, i) of a move m that was taken
during a match with lineup L (Definition 13.3). This influence relates to the perspective
of player i as it is based on the RPV from the perspective of player i. We will use this
definition to quantify the influence of chance and the influences of the players.

We intend to arrive at measures that describe the influence of chance in comparison to
other sources of influence (SI). To conduct such a comparison we must identify sources of
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influence and assign each element of the match equation 13.13 (Section 13.4.2) to one of
these sources.

For a game with n players we propose to the following n+2 distinct sources of influence:

• chance

• player 1

• player 2

• . . .

• player n

• match expectation

The source chance is rather obvious. To this source we assign the combined influence
all moves that are labeled as chance moves. (We have yet to define what we mean by
combined influence). In line with Assumption 2 we consider chance moves to be the only
source of chance influence. This implies that player moves are not influenced by chance.
We will discuss this assumption later in Section 16.1 and again in Section 21.2.4.

To every player we assign the influence of all moves taken by that player (in accordance
with Assumption 3). The separation of player influences into n distinct SI differs from
the approach taken in Part I. This separation is a necessary prerequisite for the concept of
controllability, discussed in Chapter 15.

Since the match expectation describes a situation in which the moves of a match have
not yet taken place, it is independent of the move influences. Therefore it does not con-
tribute to the influence of chance nor to the influence of the players. That we have named
the match expectation (MEi) among the sources of influence may appear confusing. After
all, we have defined influence as a property of moves. Our choice can be justified by inter-
preting MEi as the influence of “meta-moves”. Namely, selecting a game G and sampling
a lineup L. This concept is elaborated in Chapter 16.

Besides, the match expectation is simply one of the contributing terms in the match
equation and must thus be accounted for. “Influence” in this case, can be understood in
the colloquial sense of word.

13.4.4 Combined Influence of an SI

In the previous section we have defined distinct sources of influence (SI). We must now
discuss the combined influence that was exercised by each SI over the course of match g.
Doing this requires additional assumptions.

In Section 13.4.1 we have shown the additivity of the influence I for move-sequences.
If we wish to talk about the combined influence of all the chance (or player) moves in a
game we must extend our definition of influences to arbitrary sets of moves. We propose
that the following assumption is compatible with an intuitive understanding of influence:
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Assumption 4 The combined influence of any set of moves is the sum of the individual move
influences.

This assumption allows moves with positive influence to cancel out with moves that have
negative influence even when not executed directly after each other. This behavior assures
consistency if we consider that a new game could be created by chaining several other
games together. Whether we play these games individually or as a whole, we would be
interested in the bottom-line influence of the SI.

Under Assumption 4 we can quantify the combined influence for each SI defined in the
previous section. These numbers are specific to a match g = (L,P) with P = (s0,s1, . . .sk)

Let Mi denote the set of all moves by player i and MC denote the set of chance moves in
match g.

MC(g) := {(s j,s j+1) | chance is to move in state s j}
Mi(g) := {(s j,s j+1) | player i is to move in state s j}

Using the sets of moves defined above, we define the influence for the SI:

ICi(g) := ∑
m∈MC(g)

I(m,L, i) (13.14)

IP j,i(g) := ∑
m∈M j(g)

I(m,L, i) (13.15)

MEi(g) := Ṽi(s0,L) (13.16)

ICi(g) denotes the influence of chance on the affected player i, IP j,i(g) denotes the influ-
ence of player j on the affected player i and MEi(g) denotes the match expectation of the
affected player i.

We will use the terms IC, IP j,ME as shorthands for ICi(g), IP j,i(g),MEi(g) whenever the
match g and the affected player i are obvious from the context (e.g. in single-player games).

We can now rephrase the match equation (Equation 13.13 from Section 13.4.2) with
the terms from above.

Ṽi(sn,L) = ME+ IC+ IP1 + IP2 + · · ·+ IPn (13.17)

Whereas Equation 13.13 “explained” how the influence of individual moves leads to the
match result, we can now give an explanation in terms of SI.

Figure 13.5 shows an exemplary match h = (L,(s0,s1,s2,s3)) for the game Gexample from
the perspective of the affected player 2. Game Gexample and the lineup L were already used
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Figure 13.5: An exemplary match h. The path through the game tree is highlighted and
every node is marked with the RPV for the lineup L from the perspective of
player 2.

in Figure 13.4. The influences of the SI are as follows:

MC(h) = {(s2,s3)}
M1(h) = {(s0,s1)}
M2(h) = {(s1,s2)}
M3(h) = {}

ME2(h) = 1.1

IC2(h) = −0.5

IP1,2(h) = 0.1

IP2,2(h) = 0.3

IP3,2(h) = 0

We observe that Equation 13.17 holds:

Ṽ1(s3,L) = 1 = 1.1−0.5+0.1+0.3+0 (13.18)

Given the influence value for each SI we can already discuss some interesting match
properties: The leading sign of IC shows whether a player was advantaged or disadvan-
taged by chance moves. If IC is a positive number, than the affected player cannot claim
that his result is due to “bad luck”.
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The leading sign of ME points to the existence of “unfairness” or skill disparity among
the agents or both (the difficulty of distinguishing between these cases is discussed in
Section 16.2). The term IPi (short for IPi,i) denotes the influence of the affected player i
upon his own result. It reveals whether the affected player played below or above his usual
strength. To reach further conclusions we must proceed to compare these values.

13.4.5 Comparing different SI

The influence of an SI can be a negative or a positive number. However, when comparing
influence values of different SI, the leading sign is irrelevant. Consider match h from
Figure 13.5. The influence of player 1 is positive (IP1 = 0.1) and the influence of chance is
negative (IC =−0.5). A direct comparison of influence values is misleading. The fact that
IP1 > IC does not imply that chance had less “influence” on the match result than player 1
(“influence” in this case is a synonym for importance). On the contrary, chance produced
a much greater change in value than player 1 did.

We turn this observation into an assumption:

Assumption 5 SI must be compared according to their absolute influence.

We will therefore assemble our measures from the absolute values |ME |, | IC | and | IP j |.

We wish to note that the last two assumptions in this section may not be psychologically
accurate. Regarding Assumption 4 it may be that people do not weigh all moves equally
when judging the combined influence of moves. One might argue that moves with higher
influence are remembered more and therefore dominate the perception of the combined
value. As a though experiment, consider a match where IC arose as the following sum:
IC = 1 + 1 + 1 + 1 + 1 + 1− 5 = 1. It is easy to image the frustration of the affected player
over his misfortune and the end of the match. Yet, when looking at the complete match,
this player must admit that he was lucky after all.

Regarding Assumption 5 it may also be that people judge the influence (or rather impor-
tance) of an SI differently depending on the sign. One could argue for a bias to understate
the importance of favorable chance and to overstate the importance of favorable moves
taken by oneself. Such a perceptional bias is understandable as it makes the affected player
appear more skilled. However, the goal of this thesis is a measure that could be agreed on
by rational people after a discussion. Such discussion should uncover perceptional biases
and lead to assumptions as taken above.
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13.5 Summary

In this chapter we have discussed the general concept of influence. Based on three fun-
damental assumptions we have shown that the influence of chance and skill on a game
depends on the game tree, the behavior of the players, and a concept for evaluating game
states.

We have stated our Fundamental Axiom of Influence and used it to define the influ-
ence I of a move. The influence I depends on the match in which the move occurred. More
specifically, it depends on the agents who played in that match. For a game with multiple
players, the influence I also depends on the perspective of the player who is affected by
the move. Based on the influence of a move, we have analyzed the different influences on
a match result and introduced the concept of a source of influence (SI). In the next chap-
ters we will define the measures of chanciness and controllability based on a comparison
of these SI.
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14.1 Introduction

In the previous Chapter we have quantified the influence of different sources of influence
(SI). In this chapter we define the measure of chanciness based on comparison of these
influences. We distinguish between the chanciness-values of different player perspectives.
We also distinguish between the chanciness of a single match and the chanciness of a game.

14.2 The Chanciness of a Match
from the Perspective of Player i

In the previous chapter we have laid the groundwork for comparing the various influ-
ences on a match result. We have defined the sources of influences (SI) and assigned an
influence value to each one of them. In accordance with our Assumption 5, we will now
compare the absolute influence of the SI.

To shorten our forthcoming definitions we first introduce the term total absolute influ-
ence. TIi(g).

Definition 14.1

TIi(g) := |MEi(g)|+ | ICi(g)|+ | IP1,i(g)|+ | IP2,i(g)|+ . . .+ | IPn,i(g)|

Our first measure relates the absolute influence of chance IC to the influence of all other
sources. We thus define the chanciness of a match, chai(g) for a match g of an n-player game
G evaluated from the perspective of player i:

Definition 14.2

chai(g) :=
| ICi(g)|
TIi(g)

The measure cha reaches its minimum of zero iff the absolute influence of chance | IC |
reaches zero. It reaches its maximum of 1 iff IC is nonzero and all other SI have influence
zero. The chanciness of a match is undefined for a total absolute influence TI of zero. For
this to happen, all SI must have had influence zero. In this case, a comparison is arguably
meaningless.
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14 Chanciness

For the example match h from the previous chapter (Figure 13.5) we calculate the
chanciness of a match for the affected player 2:

ME2(h) = 1.1

IC2(h) = −0.5

IP1,2(h) = 0.1

IP2,2(h) = 0.3

IP3,2(h) = 0

TI2(h) = 1.1+0.5+0.1+0.3+0 = 2

cha2(h) = 0.25

For the perspectives of the other players we would generally receive different values.
For the example match h however, all perspectives have the same chanciness of 0.25 (cal-
culations in Appendix E).

Our Definition of cha is very similar to the definition of the relative influence of chance
(Definition 5.3) from Part I. The only difference is that all players are considered as sep-
arate sources of influence in this part. For an n-player game G we will generally have n
different values of cha.

However, for the special case of two-player zero-sum games it can be shown that
cha1(g) ≡ cha2(g) for any match g (The proof is given in Appendix G). This justifies the
approach of Part I where a single value of chanciness was used to describe such games.

14.3 The Chanciness of a Game
from the Perspective of Player i

In this section we define the measure chanciness of a game. For this measure we rely on
Assumption 1: The properties of a game derive from the properties of matches. We must
therefore define which matches are to be considered and furthermore how the measures
of these matches are to be combined.

14.3.1 Sampling Matches

A game tree that contains chance moves may allow for matches that completely avoid
these chance moves. The game Chess-Or-Coin was introduced in Section 13.2.2 to illus-
trate this. Whether matches with chance moves or matches without chance moves occur,
depends on the behaviour of the players. Thus, the chanciness for such games also depends
on the (stochastic) behaviour of the players. We make this dependency explicit by basing
our sample of matches on a population of agents Π and a probability distribution Ψ over
the lineups that can be sampled from Π. Both are part of our model given in Chapter 12.

As stated in Section 12.3 we assume that for the game G under discussion there exists
a process that samples lineups according to some probability mass function Ψ. Since our
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14.3 The Chanciness of a Game

agents are also described stochastically, we can regard a match g = (L,P) as the result of
a stochastic process. Consequently the influences of the SI and the chanciness of a match
chai(g) are random variables.

14.3.2 Combining the Properties of Possible Matches

The probability for a given match g = (L,P) to be played is well defined as the probability
of the path P to be taken under the condition that the lineup L was sampled.

An obvious way to account for the many different matches that could be played among
the population Π is to aggregate the values of cha with the expectation operator E. Since
cha is a nonlinear function of random variables it makes an important difference whether
we apply E at the outside of cha or at the inside of cha at its arguments. The failure to
consider these differences goes by the name Fallacy of the Averages [Wag 1969].

The chanciness of a match chai(g), itself a random variable, is a function of the random
variables ME, IC, IP1, IP2, . . . , IPn. To these variables, the non-linear operations of division
and of taking the absolute value are applied. This gives us three candidate formulas for
the chanciness of a game.

CandidateA(G,Π,Ψ) :=
|E(IC)|[

|E(IC)|+ |E(IP1)|+ |E(IP2)|+
. . .+ |E(IPn)|+ |E(ME)|

] (14.3)

CandidateB(G,Π,Ψ) :=
E(| IC |)
E(TI)

(14.4)

CandidateC(G,Π,Ψ) := E
[
| IC |
TI

]
(14.5)

In the definition of CandidateA, the expectation operator is applied directly to the influ-
ence values of the SI. This candidate is of little use, since the numerator term |E(IC)| is
zero for any game G regardless of the population (Proof in Appendix D). Thus CandidateA

is also constantly zero. Obviously, a measure that is constantly zero cannot be used to
differentiate games.

The problem with CandidateC already appeared in Part I (Chapter 6). We demon-
strate the undesirable behavior of this measure with the exemplary game H shown in
Figure 14.1.

This game leads to the following situation (regardless of the population Π and sampling
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terminal nodev
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with RPV
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Figure 14.1: A single-player game in which some matches are strongly influenced by
chance. In this game, the RPV of all nodes are independent of the agent.

probabilities Ψ since there are no player nodes):

ME = 1, IP = 0 for all matches

| IC | = 0 for 90% of the matches

| IC | = 100 for 10% of the matches

cha1(g) =
0

1+0+0
= 0 for 90% of the matches

cha1(g) =
100

1+0+100
≈ 1 for 10% of the matches

CandidateC(H,Π,Ψ) = 0.9 ·0+0.1
100
101
≈ 0.1

Nine out of ten matches are not influenced by chance at all (the first chance move has
influence zero). The result of these matches is only determined by the match expecta-
tion. Every tenth match however, is very strongly influenced by chance. The definition of
CandidateC suppresses the different magnitudes of these influences.

The definition of CandidateB on the other hand, would assign to this game a value much
closer to 1 (regardless of Π,Ψ):

CandidateB(H,Π,Ψ) =
10

10+0+1
≈ 0.909 (14.6)

Why is CandidateB preferable to CandidateC? To answer this question we must look at
series of matches.

14.3.3 Series of Matches

So far, our model of a match and our definitions of influence were all centered on the
analysis of single matches (played by a random lineup of agents). If we know that more
than one match will be played by the same lineup and we are interested in the expected
influence for such a series of matches, we should expect different results.

As Noga Alon argues (based on the central limit theorem), the expected influence of
chance diminishes when the number of consecutive matches grows [Alo 2007]. If we are
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14.3 The Chanciness of a Game

interested in the remaining influence of chance on the added result of a fixed number of
k matches, we can still use the measures defined in this chapter. We can model k matches
of game G as a single game G′ by assembling a new tree from copies of the tree of G. To
model k + 1 matches every leaf node for the tree of G′ must be replaced with a copy of
the tree of G as new subtree. Furthermore, the result of the leaf that is replaced must be
added to the results of all leaves in the new subtree.

Figure 14.2 shows the Game H ′ which results from modelling a series of two matches
of Game H (Figure 14.1).

terminal nodeu

Chance node

0.9 0.1

0.5 0.5

0.9 0.1

0.5 0.5

12 -99 102103

0.9 0.1

0.5 0.5

1-99 100-200 1022

0.9 0.1

0.5 0.5

1002 204103

Figure 14.2: Two consecutive matches of Game H (Figure 14.1) modeled as a single
match.

Using this approach we should expect that the chanciness of a series of matches will be
lower than for a single match. Instead, the match expectation will come to dominate the
combined result for such series of matches.

Based on this trend we argue that the game of Roulette, which is commonly classified as
a game of pure chance, ceases to lose this character when the number of matches grows.
For a sufficiently large number of matches it is practically certain that the combined result
for the bank will be a large positive number (which explains the continued existence of
this venture). On the other hand, the reduced influence of chance does not imply that
roulette is a game of skill. For roulette it just underlines that the game is “unfair”. The
idea that low chanciness does not imply a high level of skill is a key motivation for our
concept of controllability, defined in the next chapter.

We now calculate the values of both candidates CandidateB and CandidateC in regard to
the game H ′ (again, all values are independent of Π and Ψ). For every terminal node in
the tree of H ′ there is a unique match which ends in that node. The probability for each
match is the product of the probabilities of all moves in that match. By summing over all
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possible matches we obtain the following values (Pr denotes the probability):

ME = 2, IP = 0 for all matches

Pr(| IC |= 0) = 0.92 +2(0.12 ·0.52) = 0.815

Pr(| IC |= 100) = 0.9 ·0.1+2(0.1 ·0.9 ·0.5) = 0.18

Pr(| IC |= 200) = 2(0.12 ·0.52) = 0.005

CandidateB(H ′,Π,Ψ) =
0.18 ·100+0.005 ·200

(0.18 ·100+0.005 ·200)+0+2
≈ 0.905

CandidateC(H ′,Π,Ψ) = 0.18
100
102

+0.005
200
202
≈ 0.18

We can now observe the problem of the CandidateC measure. Instead of decreasing,
as we would expect for a longer series of matches (two instead of one), the value of
CandidateC has increased! The measure CandidateB on the other hand, behaves as ex-
pected. For this reason we abandon CandidateC and use CandidateB for our definition of
the chanciness of a game.

14.3.4 The Definition of CHA

We define the chanciness of the game G from the perspective of player i as the expectation
over random matches g = (L,P) sampled according to Ψ from a population Π and played
according to the rules of G and the agents in L:

Definition 14.7

CHAi(G,Π,Ψ) :=
E(| ICi(g)|)
E(TIi(g)

In Section 14.2 we left the chanciness of a match chai(g) undefined for a denominator
of zero. This does not present a problem for Definition 14.7 as long as some matches are
influenced by chance or by the players.

In theory, the denominator of Definition 14.7 might be zero as well. In our opinion,
this is not a problem either, because games where E(| IC |), ME,E(| IP j |) all equal zero are
rather pathological. E(| IC |) = 0 implies that IC is always zero and thus chance moves are
meaningless for the outcome of the game. Likewise E(| IP j |) = 0 implies that none of the
agents have influenced the result. In this case, player moves must either be deterministic
or meaningless for the outcome of the game. In fact, every state in the game tree that is
ever visited would have the same relative positional value (RPV) of zero. Arguably, such a
game need not even be analyzed.

The chanciness of a game measures the propensity of matches to be (relatively) influ-
enced by chance. The value of CHAi(G,Π,Ψ) can be computed exactly by first calculating
the probability for every possible match g and then calculating the expected absolute in-
fluence for all SI.
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We will now calculate the value of CHA2(Gexample,Π,Ψ) for our example game Gexample.
We keep our population Π and lineup probability Ψ simple by assuming that the single
lineup L = (A1,A2,A3) occurs with probability 1. For the agents in L we again use our
example agents from Section 12.2. Thus we have Π = {A1,A2,A3} and Ψ = {(L,1)}.

This special case of having only a single lineup is very similar to the situation discussed
in Part I (Chapter 6).

The forthcoming values are calculated for the perspective of affected player 2. Each
terminal node in the tree of Gexample corresponds to a possible match. The probability
that one of these matches occurs is the product of the move probabilities along the se-
quence of nodes for that match. For reference, Figure 14.3 shows these probabilities. The
expectation operator E applies to the random match g.

E(|ME2(g)|) = 1.1

E(| IC2(g)|) = 0.25 ·0+0.75 ·0.8 ·0.5 = 0.3

E(| IP1,2(g)|) = 0.25 ·0.3+0.75 ·0.1 = 0.15

E(| IP2,2(g)|) = 0.25 ·0.8 ·0.2+0.25 ·0.2 ·0.8

+0.75 ·0.8 ·0.3+0.75 ·0.2 ·1.2 = 0.44

E(| IP3,2(g)|) = 0.75 ·0.2 ·2 = 0.3

E(TI2(g)) = 1.1+0.3+0.15+0.44+0.3 = 2.29

CHA2(Gexample,Π,Ψ) =
E(| IC2(g)|)
E(TI2(g))

≈ 0.13

For the perspectives of player 1 and player 3 we get the following values (calculations
in Appendix F):

CHA1(Gexample,Π,Ψ) = 0.12

CHA3(Gexample,Π,Ψ) = 0.16

The exact computation of the chanciness of a game is unfeasible for large game trees
(trees with a large number of nodes). For this reason we must resort to approximations of
our measure. This topic is discussed in Chapter 18.

14.4 Condensing Player Perspectives

The chanciness of a match and the chanciness of a game are thus far defined for the per-
spective of the affected player i. For an n-player game G, we must therefore deal with a
n-tuples of values. This tuple is interesting because it enables us to compare the different
player perspectives and uncover potential asymmetries1.

1The idea that different player perspectives may perceive the impact of chance and skill differently is also
discussed by Dreef [Dre 2005, 42].
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Figure 14.3: The tree of Game Gexample reduced to the perspective of player 2 with move
probabilities for a specific lineup L. Each node s is annotated with the RPV,
Ṽ2(s,L).

For human players who wish to argue about a match g and for game inventors seeking
to analyze their creations, this n-tuple is the appropriate measure. If we seek to classify
games from the perspective of a lawmaker, it may be preferable to condense this tuple
into a single number.

An obvious choice for describing n values with a single number is the mean value. This
approach could be justified if matches are typically repeated with rotated lineups such that
every agent experiences the different perspectives (in this case it may also be interesting
to model the series of matches as a new game as explained in Section 14.3.3). Other-
wise one could take the conservative approach of bounding the chanciness of a game with
the maximum or minimum value for the different perspectives. Comparing the minimum
value of chanciness of a game (across all player perspectives) with a given threshold is con-
servative in declaring a game as “game of chance”. In contrast, comparing the maximum
value chanciness of a game is conservative in declaring a game as “not a game of chance”.

14.5 Summary

In this chapter we have defined the chanciness of a game to describe a game from the
perspective of a specific player. This measure is based on the chanciness of a match which
describes a match, again from the perspective of a specific player.

Ultimately, these measures depend on a population of agents and detailed models of
individual agent behavior. These dependencies may appear inconvenient but as we will
see in Chapter 17, they cannot be neglected.
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15 Controllability

15.1 Introduction

In the previous chapter we have defined the chanciness of a match and the chanciness of a
game to describe the influence of chance on a match g and a game G. Both measures are
specific to a player perspective i (the affected player).

If we know that the chanciness from the perspective of player i is high, we also know
that the influence of the players is low. On the other hand, interesting questions remain
when the chanciness is low. In this case we cannot generally deduce that a specific player
had much influence. It may well be that some players did nothing of relevance.

As an example, consider match h from the perspective of player 3 in Figure 15.1 (match
h was already shown from the perspective of player 2 in Figure 13.5). In match h, player
3 did not even get to move. If we examine the game tree closer, we notice that the only
choice player 3 could have had has no influence either! Both alternative moves have the
same terminal value of 0. Nevertheless, the chanciness of match h for player 3 has the low
value of 0.25 (calculation in Appendix E).
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Figure 15.1: An exemplary match h. The path through the game tree is highlighted and
every node is marked with the relative positional values for the specific lineup
from the perspective of player 3.
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Thus for matches (or games) with low chanciness, the question remains: How much
influence did the players have? To answer this question we supplement our concept of
chanciness with the new concept of controllability.

In Section 15.2 we will define the controllability of a match and in Section 15.3 we will
define the controllability of a game. Both measures are structurally similar to chanciness
measures in the previous chapter. In Section 15.4 we will discuss the reasons for naming
our measure “controllability” and contrast it with the concept of “skill”.

15.2 The Controllability of a Match
from the Perspective of Player i

In Section 13.4 we have discussed how to group the influences on a match according to
sources of influence (SI). In this chapter we will use the same terminology.

Let g = (L,P) be a match of an n-players game G. The result of match g is then subject
to the influence of n+2 distinct SI.

MEi(g), ICi(g), IP1,i(g), IP2,i(g), . . . , IPn,i(g) (15.1)

All SI are specific to the perspective of the affected player i.
Our measure controllability is intended to describe the relative importance of player in-

fluence in comparison to all sources of influence. Specifically, the influence of the affected
player i. There are n terms of the form IPi, j that describe the influence of player i on the
results of the players 1 to n.

Based on our agent model (Section 12.2), we know that every agent only cares about
his own result1. Therefore, the influence of player i on the result of the other players is
irrelevant. The only important term for the influence of player i is IPi,i, his own influence
on his own result. This idea is central to our concept of controllability.

Analogously to our measure of chanciness, we relate the absolute influence of the af-
fected player i to the influence of all other SI. We thus define the controllability of a match,
coni(g) for a match g of an n-player game G evaluated from the perspective of player i:

Definition 15.2

coni(g) :=
| IPi,i(g)|

TIi(g)

The measure con reaches its minimum of zero iff the absolute influence of the affected
player | IPi,i(g)| is zero. It reaches its maximum of 1 iff IPi,i(g) is nonzero and all other SI
have influence zero. For the measure con to yield values from the range of [0,1] it was
necessary for influences of the players to be separated. If the influences of the players had
been combined into a single SI, the numerator might have exceeded the denominator2.

1 Jealousy or malevolence among the agents can be expressed through a zero-sum reward structure.
2 As an example, consider the case of MEi = ICi = 0, IP1,i = 2, IP2,i = −1. For the affected player i = 1 we

would have a numerator of 2 and a denominator TIi = |2−1|= 1
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Just like the measure cha, the controllability of a match is undefined for a total absolute
influence TI of zero.

Since chai(g) and coni(g) use the same denominator TIi(g) it makes sense to compare
them directly. This tells us the relation of chance influence to player control.

For the example match h in Figure 15.1 we calculate the controllability from the per-
spective of the affected player 3:

MC(h) = {(s2,s3)}
M1(h) = {(s0,s1)}
M2(h) = {(s1,s2)}
M3(h) = {}

ME3(h) = 1.15

IC3(h) = −0.5

IP1,3(h) = 0.05

IP2,3(h) = 0.3

IP3,3(h) = 0

con3(h) =
0

1.15+0.5+0.05+0.3+0
= 0

This was to be expected as player 3 did not even get to move.
For the perspectives of the other players we receive different values (calculations omit-

ted):

con1(h) = 0.4

con2(h) = 0.15

The chanciness of a match defined in the previous chapter is only interesting for games
with chance moves (cha is trivially zero for deterministic games). By contrast, the con-
trollability of a match can be used to compare asymmetries among the different player
perspectives even for deterministic games.

15.3 The Controllability of a Game
from the Perspective of Player i

In Section 14.3 we have defined the chanciness of a game based on the properties of
matches. Our reasoning in regard to the sampling of matches and the combining of their
properties applies unchanged.

Thus, we define the controllability of game G from the perspective of player i as the
expectation over random matches g = (L,P) sampled according to Ψ from a population Π

and played according to the rules of G and the agents in L:
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Definition 15.3

CONi(G,Π,Ψ) :=
E(| IPi,i(g)|)

E(TIi(g)

The controllability of a game measures the propensity of players to influence their own
match results (relatively). The value of CONi(G,Π,Ψ) can be computed exactly by first
calculating the probability for every possible match g and then calculating the expected
absolute influence for all SI.

As already explained for the match measures cha and con, the game measures of CHA
and CON can be compared directly, since both definitions use the same denominator
E(TIi(g)). This comparison helps us to understand the relation of chance influence to
player control for a game G.

In Section 14.3 we have calculated CHA2(Gexample,Π,Ψ) for exemplary values of Π and
Ψ. In Appendix F we have also calculated the values for the perspectives of players 1 and
3. The intermediate values used in those calculations can be used directly to calculate
CONi(Gexample,Π,Ψ). Figure 15.2 gives the expected absolute influences of the different
SI from all three player perspectives3.

SI \i 1 2 3

E(|MEi(g)|) 0.4 1.1 1.15
E(| ICi(g)|) 0.3 0.3 0.3
E(| IP1,i(g)|) 1.2 0.15 0.075
E(| IP2,i(g)|) 0.36 0.44 0.36
E(| IP3,i(g)|) 0.3 0.3 0.0

Figure 15.2: Expected values of the absolute influences of all SI for random matches g of
the Game Gexample. The lineup L = (A1,A2,A3) was assumed to occur with
probability 1.

Using the influence values from the above table we compute the controllability of Gexample
for all three player perspectives.

CON1(Gexample,Π,Ψ) =
1.2

0.4+0.3+1.2+0.36+0.3
≈ 0.47

CON2(Gexample,Π,Ψ) =
0.44

1.1+0.3+0.15+0.44+0.3
≈ 0.19

CON3(Gexample,Π,Ψ) =
0

1.15+0.3+0.075+0.36+0
= 0

In Section 15.1 we pointed out that the moves of player 3 in the game Gexample are ir-
relevant to his own result. Consequently, the controllability from the perspective of player
3 is zero. While the chanciness of Gexample is very similar for the different players, our

3One way to think about chanciness and controllability is as tools for summarizing this table.
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measure of controllability reveals striking asymmetries among them. It can be shown that
the controllability of player 3 is zero in all cases. However, the controllability for players
1 and 2 would be quite different for other populations of agents. This dependency on the
population (and the sampling of lineups) is discussed in Chapter 17.

Just as for the chanciness of a game, the exact computation of the controllability of a
game is unfeasible for large game trees (trees with large number of nodes). Another
consideration that applies to chanciness as well as controllability is the need for dealing
with n-tuples of values. The ideas discussed in Section 14.4 apply to both measures.

15.4 Controllability and the Concept of “Skill”

The title of this thesis mentions the concepts of “chance” and “skill”. Our measure of
chanciness was so named because it is intended to measure the influence of chance on a
game. Why then have we not yet spoken of the “skilliness” of a game? The reason for
naming our measure of player influence “controllability” is the wish to avoid confusing
two different concepts.

On the one hand there is the concept of “skill”. Skill is usually understood as the
attribute of an agent. The skill of an agent is his aptness for achieving high results in a
game. In the context of two-player zero-sum games such as Chess, the skill of an agent
is understood as his ability to defeat other agents. This ability is measured by analyzing
the results of many matches between different agents. It can be expressed in a skill rating
such as the Elo rating [Elo 1986]. In Section 16.2.2 we explain how this agent “skill”
contributes to the match expectation.

On the other hand we have the concept of “influence”. This describes a relationship
between actions (moves) and outcomes (match results). By applying the concept of in-
fluence to chance moves we obtain the measure of chanciness as defined in Chapter 14.
Applying the concept of influence to player moves however, yields something distinct from
“skill”!

As an example, consider a player who is able to play the game chess (or any two-player
zero-sum game4) perfectly. Such a player would certainly be considered “skilled”. How-
ever, the moves of this perfect players would have zero influence. Since the perfect player
always selects the move with the optimum reward he must either play deterministically
or select at random among moves that are equally optimal. In either case the relative
positional value of his position does not change. Consequently, the influence of a player
cannot be the same concept as his “skill”.

We have chosen to name our measure “controllability” to emphasize the intention of
the players. The alternative term “influenceability” is not specific enough since it does
not distinguish between the influence of chance and the influence of the players. There
are some similarities to the term “controllability” as used in control theory [KFA 1969]. A
control system is controllable if the inputs allow the system to be moved through its entire

4As mentioned before, perfect play is not easily defined for more general classes of games [MP 1992].
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state space. Likewise, a game can only be controllable if there are player moves that allow
different game results to be achieved.

The question remains, why the concept of “skill” appears in the title of this thesis, even
though we discuss the distinct concept of controllability. This is in reference to another
use of the word “skill”. We use this word to describe games, saying “game G is a game of
skill”, “game G is not a game of skill”, and “game G is partly a game of skill”. There are
basically two approaches of quantifying this usage of the word “skill”

The approach of BDG (Section 11.3): In this approach the “skill of a game” is quanti-
fied by measuring how agents with different skill ratings affect the expected result
of matches (the match expectation ME, using our terminology). The “skill of a game”
is thus linked to the “skill” of the agents.

Our concept of controllability: In our approach, a game is a “game of skill” to the degree
that it has high controllability.

We can expect both approaches to arrive at similar classifications. If a game allows for
agents of different skill ratings, it will also allow for populations that have high controlla-
bility.

The approach of this thesis has the advantage of applying to matches as well as games.
Using our approach we can, for example, recognize that a game G is a “game of chance”,
yet some matches g of G are decided by the influences of the players rather than by chance.

We propose that our measure of controllability captures the essence of that which hu-
mans players seek in a “game of skill”. For one, humans who seek to apply their skill avoid
games that they find trivial. People rarely go back to the game of Tic-Tac-Toe once they
have mastered its strategy. This state of having mastered a game is reflected in being cer-
tain of one’s moves and being able to act almost deterministically. Hence, the true master
of a game has zero controllability over its result (unlike his novice opponent who may or
may not discover a viable move)5. Thus our concept of controllability resonates with the
ideas of Lasker who said that chess would be “dead” for perfect agents. He suggested that
a game is “alive”, only if agents sometimes make erroneous moves [Las 1925, 66,171].

One might object that such a master player could deliberately play worse and thus
negatively influence his result. This kind of control should not be considered meaningful.
Otherwise we could add a "lose the game instantly"-move to any game of chance and thus
transform it into a controllable game.

The character of a game changes with the proficiency of its players. Once we under-
stand a game so thoroughly that all move decisions turn into trivialities, we can no longer
improve our results by our conscious effort. Thus we lose the sense of control we once
had when the game was still new. If all participating players should reach such an ad-
vanced level of play they may as well just roll a diie to discover their results. Unless they

5 The master may still control the course of the game, yet his victory (and hence his result) is certain.
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discover that the game, once mastered, gives an unfair advantage to one of the players,
their results will be dominated by the influence of chance6.

The controllability of a game can be used to express this changing character of a game
as the population gains in proficiency. One simply has to compare the controllability value
for a population of beginners to the value for a population of advanced agents. The latter
population will most likely have reduced controllability7.

By assuming that players seek games with a high controllability we are able to justify
the common practice of giving the stronger player a handicap. As an example consider
the game of Go. An experienced player would tend to win most games against a player
of lesser rank. He would therefore have a high match expectation. By playing with a
handicap, he reduces the match expectation (preferably to zero). Since the match expecta-
tion appears in the denominator of Definition 15.2, the controllability is increased and the
game becomes more interesting. Finally, we prefer our concept of controllability because
it elegantly treats the influence of chance and the influence of the players in the same way.

15.5 Limitations

Our concept of controllability does not include the aspect of learning by individual agents.
A human agent may willfully modify his playing behavior through practicing a particular
game. If successful, this will be reflected in an increased value for the match expectation
MEi whenever this agent plays in the player role i. By influencing the match expectation
this player also influences his result. One could argue that the decision to practice a game
is also an instance of controlling game results. Since our model only considers static
agents, our measure cannot account for this kind of control.

15.6 Summary

In this chapter we have defined the controllability of a game to describe a game from the
perspective of a specific player, and the controllability of a match which describes a match
from the perspective of a specific player. Both measures are based on the comparison of
influence and follow the ideas developed in Chapter 14.

The concept of controllability complements the concept of chanciness to describe the
influence of chance and skill on a game. Since the controllability may differ among the
player perspectives this measure can be a useful tool for describing deterministic games
as well as non-deterministic games.

6A deterministic game would become meaningless once all agents are masters.
7There may also be games where the beginners fail to find influential moves. In this case advanced agents

may have increased controllability. However, as soon as the agents approach optimal play, controllability
will go down.
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As we have argued in the previous chapters, the result of a match is affected by different
sources of influences (SI). Two of those SI have been given special treatment:

The relative influence of chance ICi has been used as the main term in our definition of
chanciness. If the chanciness is high for a match (or a game), we know that chance
is important.

The influence of the affected player on his own result IPi,i has been used as the main
term in our definition of controllability. If the controllability is high for a match (or
a game), we know that skillful decisions are important.

However, there may be matches (and games) where both the chanciness and the control-
lability are low. In this case the other SI must be be dominant. In this chapter we discuss
the interpretation of the other sources of influence.

16.1 Influence of the Moves of Other Players

What does it mean if the result of a match (or a game) is dominated by the influence of
the other players? In the concluding remarks of Part I we suggested that such influence
may be related to chance.

In a match g of a two-player zero-sum game G the influence of the other player on the
result of the affected player is mirrored by the influence of the other player upon his own
result (for every move m, I1(m) =−I2(m)).

As a consequence every move decision by the other player which influences the affected
player is a relevant decision for the other player. This makes it easy to argue that the
influence of the other player is unrelated to chance.

In general-sum games or games with more than two players a different type of situation
may occur. There may be moves that influence the result of the affected player but do not
influence the other player who is responsible for that move. An example of this is known
as the king maker situation. It can occur in games with more than two players: The player
who moves has effectively lost the game but with his move, he has the power to decide
which one of the other players will win. In this situation the rules of the game give no
incentive for him to prefer either choice. From the perspective of an affected player the
choice may thus appear random.

However, the fact that the affected player may have no way to predict the behavior of the
other player based on the games rules does not allow the inference that the choice actually
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is random. Without detailed knowledge about the thought process (or algorithm) of the
other player, it is impossible to know if randomization is involved. Indeed one might argue
that true randomness is impossible for humans and every action is based on a (potentially
subconscious) reason.

If on the other hand we admit that players may occasionally randomize their choices,
they could very well do so even in a game of chess1. In that case even games without
chance nodes could be influenced by chance. Thus, the well accepted concept of a “pure
game of skill” would lose its meaning.

The concepts developed in this thesis acknowledge that the influence of other players
can appear similar to the influence of chance: Our measure of controllability is equally
diminished when either the influence by the other players or the influence by chance is
high.

16.2 The Match Expectation

All matches of game G start in the same root position s0. Accordingly, the value of match
expectation, MEi(g) = Ṽi(s0,L) depends on two things: the lineup L and the game G itself.

16.2.1 The Influence of the Game

For some games, the value of the starting position s0 is unaffected by the lineup L. As
an obvious example, consider games without player nodes. In these cases, the match
expectation appears to be a fundamental property of the game G. We call this property the
influence of the game G.

The influence of a game is closely related to the concept of “unfairness”. In a zero-sum
game without player nodes, a player with a negative match expectation is disadvantaged
through no fault of his own (there must be other players who have a positive expectation).
In a non-zero-sum game all players may have a negative (or positive) match expectation
at the same time. For these games, bad (or good) “fate” may be a better description of the
situation.

If a game has low chanciness and low controllability, it is helpful to know that results
are influenced by “unfairness” or “fate” rather than by chance or by player decisions. It
would therefore be useful if the influence of a game could be generalized to games where
the lineup L does affect the match expectation.

One possible way to generalize the influence of a game comes from our population Π

and the sampling probability for lineups Ψ. In Chapter 12 we assume that there exists a
procedure to sample lineups. Since this sampling is also a sort of “random move” which
precedes the state s0, we can posit the “meta-state” s−1. Namely, the state in which the

1One could argue, that agents would only randomized their choices when perceiving situations similar to
the king maker situation. Following this assumption would require a more elaborate agent model.
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sampling of the lineup has yet to take place. The expected value of state s−1 is well defined
through the sampling probability Ψ and the different values of Ṽi(s0,L). Since this value
of s−1 is independent of any particular lineup it can be considered a fundamental game
property (in respect to Π and Ψ, of course).

Definition 16.1 The population value of state s, Vpopi(s,Π,Ψ) is the expected value of
Ṽi(s,L) when the lineup L is sampled with probability Ψn(L) from the population Π.

Definition 16.2 The influence of the game IG for game G with root node s0 is defined as:

IG(Π,Ψ) := Vpopi(s0,Π,Ψ) (16.3)

The influence of the game G is exactly the value of the “meta-state” s−1 in which the
lineup L has yet to be sampled.

That influence of a game, or the “fairness” of a game is population dependent can be
seen when considering games such as Connect-Four[All 1988] and Hex. If these games
were played by a population of agents that play optimal according to the game-theoretic
solution, all matches for these games would end in a win for the player who moves first2.

On this level of playing strength the games are obviously unfair. If we assume that
games which are obviously unfair are avoided by most players, we can conclude from the
enduring interest in Hex and Connect-Four tournaments that the games are quite fair for
the population of tournament participants.

16.2.2 The Influence of the Lineup

We have already described the sampling of a lineup as a “meta-move” from state s−1 to
state s0. This suggests another definition.

Definition 16.4 The influence of the lineup L on game G with root node s0, IL

IL(Π,Ψ) := Ṽi(s0,L)− IG(Π,Ψ)Ψ) (16.5)

This definition follows Axiom 1: the influence of the “meta-move” (s−1,s0) is defined as
the change in value between s0 and s−1.

The influence of the lineup IL can be seen as an indicator of skill (for one-person-games)
or as skill disparity for games with multiple players. BDG have proposed that such skill
disparity within a population is a necessary property for games of skill (see Section 11.3).
While we prefer the measure of controllability for describing games of skill, it is certainly
interesting to know how strongly match results are influenced by a particular lineup.

2Such agents exist for Connect-Four, while a non-constructive proof exists for Hex.
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16.2.3 Concluding Remarks

Using the above definitions it is plain to see that for any match g = (L,P) of the game G
the following equality holds:

MEi(g) = IG(Π,Ψ)+ IL(Π,Ψ) (16.6)

Similar to our approach towards the match equation, we can “explain” the value of the
match expectation with the combined influence of the influence of the game and the influ-
ence of the lineup.

We have yet to justify our choice of using the word “influence” for the influence of a
game. Can the influence of a game be interpreted as the influence of a “meta-move”, just
as the influence of the lineup is the influence of the “meta-move” (s−1,s0)? What would be
the state s−2 and how could we define its value?

These questions are well outside the usual scope of game analysis. They border on the
metaphysical. One suggestion that presents itself is to consider the move (s−2,s−1) as the
act of selecting a game among the set of all possible games. It is not clear to us who should
perform this move, since there is not even a lineup of agents yet. However, for reasons of
universal symmetry and beauty we are convinced that the value of the state s−2 should be
0. In this sense the influence of the game G could indeed be considered as the change in
value caused by the selection of game G.
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In the previous chapters we have defined the measures chanciness, CHA and controllability
CON in reference to a population of agents. This dependency complicates practical use,
since it is difficult to create a detailed population model for a population of human agents.
One could easily argue that it is impossible to obtain all the necessary move probabilities
to model even one human agent accurately. For this reason we should obviously ask: what
conclusions can be drawn about a game G in ignorance of a population?

17.1 Games Without Player Nodes

Our whole framework of analyzing influence relies on the evaluation of game states with
relative positional values (RPV). Fortunately there exist some game states (nodes) s for
which Ṽi(s,L) can be evaluated without knowledge of the lineup L (and hence without
knowledge of agents or population). By Definition 13.1 we can trivially evaluate terminal
nodes. We can also evaluate a chance node s if we know the RPV of all children of s.
Taken together, these two facts allow us to completely analyze games that have no player
nodes (and hence no player moves).

Chance node with 
relative positional value

terminal nodeu v

c) d)

-1 1

98 100

a) b)

0.5 0.5

1 -1

0.5 0.5

1 1

0.5 0.5 0.5 0.5 w

0,1

1 1

0

1

99

Figure 17.1: Small games without player nodes. Games a)-c) are single-player games and
game d) is a game of two players.

Figure 17.1 shows four small games which can be fully analyzed independently of a
population. For all four games, the controllability is obviously zero, since there are no
player moves (and therefore no player influence). However, all games receive different
values of chanciness. Game 17.1a) is a game for one player. It has a match expectation of
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0 and an expected influence of chance (on player 1) of 1. Accordingly, the chanciness of
that game is 1. By contrast, game 17.1b) has a match expectation of 99. This value is quite
large in comparison to the expected influence of chance, E(| IC1 |) = 1. This discrepancy
in importance is expressed in the low chanciness value for this game of 0.01.

Game 17.1c) demonstrates that the existence of chance moves is not a sufficient criteria
for chance influence. Since both terminal nodes have the same value, the influence of
chance is always zero. Hence, the chanciness of this game is 0 as well. The two-player
game 17.1d) shows another aspect of chanciness. While the chanciness of player 1 is 1 (as
analyzed in game a), the game has a chanciness of 0 from the perspective of player 2. A
simple “yes/no” answer to the question: “Is this a game of chance?”, could not adequately
describe this game.

17.2 Bounded Influence

By Definition 13.1 The RPV of a game state s is a convex combination of the values of
Children(s). This gives us upper and lower bounds for the influence of a move m = (s,s′)
from the perspective of player i.

Ii(m) ≤ maxṼi(Children(s))−minṼi(Children(s)) (17.1)

Ii(m) ≥ minṼi(Children(s))−maxṼi(Children(s)) (17.2)

The influence of a move m = (s,s′) approaches this bound if three conditions are met:

• state s′ has the highest (lowest) value among Children(s),

• move m has a probability close to zero,

• move (s,s′′) has a probability close to one, where s′′ is the child of s with the lowest
(highest) value.

Since move m must have a non-zero probability, the extremal value is never achieved. As
an obvious consequence, a move m = (s,s′) has influence zero if all children of s have the
same value. This allows us to fully analyze some games even though they contain player
moves.

Figure 17.2 shows two small games which can be fully analyzed independently of a
population. For both games, the chanciness is obviously zero, since there are no chance
moves. For the single-player game 17.2a) controllability is zero as well due to the bound-
ing of influence.

Game 17.2b) is a game for two players. Even though player 1 may influence the result
of player 2, neither player can influence his own result. Therefore, both players have
controllability zero, independent of the population.

17.3 Bounded Expectations

The influence of a single move that starts in state s can be bounded by considering the
spread in the RPV of the children of s. The contribution of that move to the expected
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Figure 17.2: Small games without chance nodes. Games a) is a single-player game and
game b) is a game for two players.

importance of chance or to the expected importance of a player is also affected by the
likelihood that s will occur during a match.

terminal nodeu
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X
Player X node
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1 -1 1

0.5 0.5

Figure 17.3: A small single-player game with chance and player nodes.

The single-player game G in Figure 17.3 cannot be fully analyzed without knowledge
about the population. However, we can compute tight bounds on the chanciness and the
controllability of this game due to the extreme bias of one chance node.

The controllability of this game can be as low as zero if all agents in our population
move deterministically. This trivial lower bound of controllability holds for any game.
Computing the other bounds is more difficult.

An agent Xp who plays this game can be fully characterized by the probability p of
taking the left child node. When p varies, the values of ME,E(| IC |) and E(| IP1 |) are all
affected. The controllability as well as the chanciness are non-linear functions of these
non-linear terms.

Figure 17.4 shows the chanciness as a function of p. CHA(G,{Xp},{({Xp},1)} is com-
puted for a population that consists only of the agent Xp (the lineup (Xp) occurs with
probability 1). The controllability of Game G has its peak of 0.01 for the uniform random
agent X0.5. The chanciness has two maxima of ≈ 0.99098 at p ∈ 0,1 and two minima of
≈ 0.98759 at p ∈ 0.25,0.75. The uniform random agent with p = 0.5 only achieves a local
chanciness maximum of 0.99. The derivation is given in Appendix C. These tight bounds
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Figure 17.4: The chanciness of Game G as a function of the agent parameter p.

justify the conclusion that Game G from Figure 17.3 is mostly a game of chance and hardly
a game of skill.

As a general rule, bounding chanciness and controllability necessitates solving highly
dimensional non-linear optimization problems. This quickly becomes unfeasible because
the dimensionality of the solution space is at least equal to the number of player nodes in
the game tree. Each player move probability is an input to the optimization problem. As-
suming a binary tree, one variable per player node is sufficient to express the probabilities
for both available moves. For trees with a higher branching factor, even more variables
are needed.

17.4 Sensitivity of Boundaries

Computing exact bounds for the chanciness and controllability of a game is not just diffi-
cult. Even worse, the relevance of exact bounds is questionable. When reasoning about
chanciness and controllability without reference to a population, all possible agents must
be considered. However, not all possible agents are plausible. If “implausible” agents are
responsible for the extremum values then those values are misleading.

To demonstrate the high sensitivity of the bounds towards “implausible” agent behavior
we will look at the term E(| IPi,i |) (the expected influence of a player upon his own result).

As a first disappointment, the lower bound for E(| IPi,i |) (and thus for controllability) is
trivially zero. This value is achieved with a population of deterministic agents (all agents
act deterministically at all player nodes). It is highly unlikely that a real life game would
be played if all people always knew (or presumed to know) exactly how to act. Therefore,
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this lower bound for controllability is most likely useless.
The upper bound for controllability is dubious as well. This can be seen by considering

a situation we call “instant-loss-button” (ILB). An ILB is any move which causes the acting
agent to end the game with an extremely low payoff. Figure 17.4 gives an example of this
situation.

In a real game, most players would quickly learn to avoid an ILB. Thus, a real population
would contain few agents who use ILBs. In a game that contains an ILB, the upper bound
of E(| IPi,i |), will most likely be caused by a population of “silly” agents who use the ILB
move with probability 0.5 (An agent who always uses the ILB has less influence). The
term E(| IPi,i |) also appears in the denominator of the definition of chanciness. Thus, the
upper and lower bounds of chanciness are dubious as well.

1

1-1 -100

0.5 0.5

Figure 17.5: A small game with an “instant-loss-button” (ILB). The move towards the right
child constitutes the ILB.
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17.5 Summary

The computation of upper and lower bounds for chanciness and controllability avoids the
need to specify a population. For small games these bounds are easily computed and for
some games the bounds are sufficiently tight.

Unfortunately, the computation is unfeasible for larger games and the boundaries are
very sensitive to “improbable” agents (extremely deterministic or extremely incompetent
agents). This underlines the need of determining the chanciness and the controllability of
a game in reference to a population of agents.

Necessary conditions for the influence of chance on game results are

• existence of chance nodes in the game tree,

• chance moves must be relevant (the spread in the RPV of the children of a chance
node must not be to low),

• chance nodes must actually appear during matches.

The necessary conditions for the influence of skill (player decisions) are very similar:

• existence of player nodes in the game tree,

• player moves must be relevant (the spread in the RPV of the children of a player
node must not be to low),

• player nodes must actually appear during matches,

• player moves must not be trivial (agents must have plausible alternative moves).

Of these conditions, only the existence-condition of nodes can be tested without refer-
ence to a population. All other conditions depend on the behavior of actual agents.
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18 Approximation of Chanciness and
Controllability

In the previous chapters we have defined the measures of chanciness and controllability
for matches as well as games. These measures depend on a detailed behavioral agent
model. The results in Chapter 17 have shown that it is not generally useful to reason about
chanciness and controllability without taking the actual behavior of an agent population
into account.

This presents us with a practical problem. For real-world populations of human agents
and computer agents (bots) we generally do not possess such a detailed behavioral model1.
In this chapter we present different approaches for approximating chanciness and control-
lability that do not require an agent model. Due to the similarity in definition of chanciness
and controllability, all topics in this chapter apply to both measures equally. For the sake
of brevity, we will only speak of the chanciness measures cha and CHA.

In Section 18.1 we describe two sampling algorithms for the approximation of chanci-
ness. In Section 18.2 we introduce the concept of subjective chanciness as an alternative
approach to the approximation of chanciness. We also discuss how both approaches relate
to different types of agents. Section 18.3 pertains to the special case of all agents being
bots. In Section 18.4 we discuss the case where human agents are involved.

18.1 Approximation by Sampling

Section 18.1.1 describes a sampling algorithm for RPV. This is the main requirement for
the approximation of the chanciness of a match. Additional considerations are necessary
for approximating the chanciness of a game. These are explained in Section 18.1.2.

18.1.1 Approximating RPV

The chanciness of a match depends on the influence of moves which is defined in terms of
relative positional values (RPV). These RPV are defined as the expected value of a position
for specific agent behavior (this is the descriptive approach as explained in Section 13.3.2).

We can approximate the RPV, Ṽi(s,L) for state s from the perspective of player i and a
lineup of agents L in the following way.

1 The lack of an agent model is sufficient to frustrate the exact calculation of our measures. However, this
is not the only problem. The calculation of RPV, using Definition 13.2, requires a recursive evaluation of
the complete game tree, which is unfeasible for large trees.
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18.1 Approximation by Sampling

1. We start a partial match2 in state s and record the result for player i.

2. We repeat the previous step a number of m times.

3. We average the results.

This gives us the sample mean of the match results, which is an approximation of the RPV
of s. For match results with a sample standard deviation of d, the standard error3 of our
approximation is given by d/

√
m.

To approximate the chanciness chai(g) for match g = (L,P) with P = (s0,s1, . . . ,sk), we
need to approximate the RPV for k+1 game states. Each partial match gives the result for
all player perspectives i, therefore the values of Ṽi and chai are obtained for all players at
the same time.

Each partial match requires in the order of k moves to complete. Thus, the number
of individual moves which must be simulated is proportional to m · k2. This becomes
problematic for games with long matches, especially if the agents are slow movers. In
Appendix B we discuss a slight improvement to the above algorithm.

18.1.2 Approximating the Distribution of Matches

The chanciness of a game is defined using the expectation operator, applied to influence
values of random matches. These random matches depend on a sampling distribution of
lineups Ψ as well as on the behavior of the agents. For a given population of agents Π

and a given distribution of lineups Ψ we can approximate the value of CHA by sampling
matches.

Our approximation algorithm consists of the following steps

1. We sample a lineup L from the population Π.

2. We Sample a match g = (L,P) with the previously chosen lineup L and record the
influence for each SI (see Section 13.4.3).

3. We repeat the above two steps m times.

4. We average the influence for each SI and substitute those averages for their expec-
tations in the definition of CHA (Definition 14.7).

The sampling of lineups can be simplified for distributions where each lineup L j has a
probability p j such that p j ·m ∈ N. In this case we can simply use the lineup p j ·m times
to eliminate any sampling error from step 1. In Appendix H we describe how the error of
approximation can be estimated for this special case.

Computing the influences of all SI for a match g from the perspective of player i, has
the same algorithmic complexity as computing the chanciness, chai(g) (The latter requires
one additional division operation). Thus, the above algorithm requires m times as many
agent moves to be simulated as the approximation of cha.

2See Section 12.3.
3We refer to the estimate of the true standard deviation.
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18.2 Subjective Chanciness
and Subjective Controllability

As mentioned in Section 13.3.1, the question of how to win has been a major focus of game
research. This research has led to a wealth of algorithms for evaluating game states. We
will refer to these algorithms as evaluation functions (EF). Ultimately, an evaluation func-
tion approximates the expected value of a game state under specific assumptions about
agent behavior. If the agents in a lineup L were to behave in accordance with those as-
sumptions, such an EF would yield values identical to the RPV.

That an EF yields a sufficient approximation of the RPV for particular agents, is generally
hard to prove. What happens if we use a particular EF anyway?

We look back at the Fundamental Axiom of Influence and recall that it defines influ-
ence in terms of “expected” values. If we interpret the word “expected” as the subjective
belief on an observer (who need not be rational in any sense), we arrive at a subjective
interpretation of influence. This subjective interpretation allows all the analysis of match
influence (Chapter 13) and chanciness (Chapter 14) to be carried out.

Previously the chanciness of a match g was defined, based on an objective description
of agent behavior. We can define the subjective chanciness of g based on any EF. Just as
chai was specific to a player perspective, different EF may be used to define the subjective
chanciness for each perspective.

What might be the use of these subjective measures? We note that the match equation
holds in the subjective view. Thus, the separation into different sources of influence is still
reasonable. If the observer, whose beliefs are expressed through the EF, can be convinced
of the reasoning behind this thesis, he should accept the subjective values of cha and con
as a characterization of chance and skill. If this observer was somehow able to analyze
a significant number of matches, he should also accept the characterization provided by
the subjective versions of CHA and CON. At the same time, we can then interpret the
subjective measures as a description of this observer’s perceptions.

While the subjective values of chanciness and controllability may be radically different
from their objective counterparts, they have one important advantage: speed. As we will
see in the forthcoming Section 18.3.2, the subjective approach can result in an enormous
speed up over the sampling approach for the case of computer agents.

18.3 Computer Agents

In this section we look beyond the agent model of Chapter 12. In our discussion so
far, agents where only understood as having a certain behavior which can be described
stochastically. This was convenient for our theory of influence and the definition of our
measures. Now we must look at more practical properties of agents.
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18.3.1 The Structure of a Computer Agent (Bot)

The fundamental task of a bot is the selection of moves. For most computer agents this
selection follows a similar two-step design pattern. Let s denote the game position that
demands a decision.

1. Assign a value to every successor state of s. These values are given by an evaluation
function (EF). We call this the internal evaluation function (IEF) of the bot.

2. Select the move, leading to the child of s which is rated highest4 by the IEF. Often,
the selection will be randomized among the highest ranking options if the optimum
is not unique.

The IEF of an agent my be either deterministic or non-deterministic. This allows for
non-deterministic behavior by the agent. By our initial assumption that every agent cares
about maximizing its own reward, the IEF evaluates game state from the perspective i in
which the agent is playing.

In the state s, it is assured that a bot will move to a child with the optimum IEF value.
Thus, when in this state, the agent can use the optimum IEF value as an estimate for the
value of s.

We define the subjectively perceived value (SPV) of a bot A:

Definition 18.1
SPVA(s) := max

c∈Children(s)
{IEFA(c)} (18.2)

To select a follow up move in the state s, the computer agent A must calculate the value
of SPVA(s) once.

18.3.2 The Sampling Approach applied to Bots

For the approximation of our measures, it makes an enormous difference whether human
agents are involved or whether we only deal with computer agents (bots). The distin-
guishing feature of bots is their capacity for playing a large number of matches. Human
players will tire and, even worse, change their behavior due to learning. Bots one the other
hand, are only subject to limited computer resources and will not change their behavior
(assuming, that potential learning mechanisms can always be suppressed).

The sampling algorithms in Section 18.1 rely heavily on the feasibility of conducting
great numbers of matches. The limiting factors are the average length of matches and the
time, that agents require for their move decisions.

As shown by the results in Chapter 20, the sampling algorithms can be carried out for
some short games (average length 25 moves) and some fast agents in practice.

4In two-player zero-sum games, one player usually uses a negated value function and thus selects the lowest
child.
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18 Approximation of Chanciness and Controllability

18.3.3 The Subjective Approach Applied to Bots

The subjective chanciness (and the subjective controllability) can principally be computed
for an arbitrary observer and his EF. However, it can be safely assumed that the agents
who play a match are particularly interested (and interesting) observers. It is therefore
natural that we consider the SPV of our agents as an approximation for the RPV. The
computation of the subjective chanciness of a match is much faster than the approximation
of the objective chanciness of a match by sampling.

Approximating the RPV for a single state s requires frequent computations of the SPVA j.
As explained in Section 18.1.1 this would entail the simulation of m partial matches, each
with a number of moves in the order of k (the average length of a match). The subjective
value of s from the perspective of player i is instead obtained by a single computation of
SPVAi(s). If we further assume that all SPVA j are equally fast, we obtain a speed up in the
order of m · k.

Consequently, the computation of the subjective chanciness of a match is faster than the
approximation of the original chanciness in the order of m ·k. To compute the chanciness of
a game (subjective or objective) we must still carry out a number of simulation matches.
Nevertheless, the speedup of the subjective approximation over the sampling approxima-
tion applies here as well.

The idea of using the subjective values of game states to describe the perceptions of the
playing agents is also used by Browne [Bro 2008]. He defines aesthetic properties of a
game based on the IEF of the agents who play the game. In Browne’s work, speed is of
paramount importance since he feeds those aesthetic properties into the fitness function
of a genetic algorithm.

18.4 Human Agents

The sampling algorithms in the previous Section cannot be usefully applied to human
agents. The number of simulation matches required for reasonable accuracy is far above
the endurance of humans. As another difference, only a few humans can express the value
of a game state similar to the SPV of bots 5. We therefore cannot use the two approaches
of Section 18.1 and 18.2 directly.

18.4.1 Substituting Computer Agents

The problem of approximating chanciness for human agents was already discussed in Part
I of this thesis. The main idea presented there was the substitution of human agents by
bots with similar behavior. Such substitution would allow us to apply all the algorithms
from Section 18.1.

The substitution approach creates the two problems of defining “similar behavior” and
finding agents who satisfy the definition. How then might “similar behavior” be de-

5A Chess master may evaluate positions using fractions of pawns and a Go master will tally his territory. This
kind of quantitative evaluation is uncommon for less advanced players.
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18.4 Human Agents

fined? The ultimate answer to this question lies in a variation of the well known Turing
Test[Tur 1950]. Two game players X and Y behave in a similar way if they cannot be
distinguished by someone (or something) observing them play.

One criteria by which agents may be readily distinguished is their skill. If agent X
performs consistently stronger than Y they cannot be the same. This criteria does not
even require us to hide the identities of the agents from the observer (as in the Turing
Test). We can simply let them play against each other and compare their results. We
could also compare their performance against a specific lineup of opponents.

How does the criteria of skill relate to the feasibility of the substitution approach? For
any game G human players encompass a certain range of skill from the worst players up
to the master players 6. At the same time, all the bots which are capable of playing G
encompass another range of skill. Since bots can easily be made to have very low skill
(e.g. by changing the leading sign of their EF), the most interesting question is the high
end of their skill range. The set of human players which cannot be distinguished from
bots by skill is indicated by the intersection of both skill ranges.

For simple games such as Tic-Tac-Toe we can certainly match every human with a bot
of similar skill. The same is true for more elaborate games such as Connect Four and
Backgammon [Tes 1995] and it is approximately true for the game of Chess. For other
games such as Go and Havannah, only a subset of all human players can be matched.

All in all, it appears to be possible to match a significant subset of all human players to
a bot with the same skill for a significant subset of all perfect information games.

Unfortunately, equal skill is not sufficient to declare two agents undistinguishable.
There is also the matter of “style” 7. One example for the effect of playing style comes
from the game Chess-Or-Coin (CC), defined in Section 13.2.2. Depending on the “style”
(or preferences) of player 1, a match of CC can have a chanciness of zero or a chanciness of
one (for players who strictly prefer one of the move choices). For two agents with equal
skill at chess, the critical move choice is completely independent of their skill.

Another example for agents distinguished by “style” is the “laziness” of Monte Carlo
Agents in the game of Go [Alt 2008]. These agents can be readily distinguished from
human players by playing unaggressive whenever they have an advantage.

We conjecture that finding a bot of similar “style” for a given human is much more
difficult than matching skill. In fact, by modeling a natural conversation as a game of
perfect information (each possible reply of at most C characters is a child move), we can
translate the common version of the Turing Test into a comparison of style.

Nevertheless, we also conjecture that it will be possible to match humans and bots
by “style” for commonly played games8. Thus, we think, the substitution approach will
eventually be feasible.

6The notion of a “range” of skills is somewhat inexact since the relation “more skilled” need not be transitive.
Nevertheless, it is common to measure skill on a linear scale (e.g. the Elo Scale [Elo 1986]).

7Other criteria for distinguishing agents could be provided by our measures of chanciness and controllability.
However, this obviously does not help us to approximate these measures for human agents.

8We trust in the progress of computer science.
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18 Approximation of Chanciness and Controllability

18.4.2 Avoiding Substitution

The substitution approach from the previous section is complicated because we need to
match playing “styles”. We cannot approximate RPV by sampling and we cannot use SPV
for most humans. However, we can still use the subjective approach and evaluate game
states with an arbitrary EF. If the human players of a match can agree on the relevance of
that EF, they can also agree on the subjective chanciness of their match, based on that EF.

Another issue is the chanciness of a game. For popular games there tend to exist tourna-
ment records of matches. Online gaming platforms such as Little Golem [Mal 2002] could
also keep records of all matches played. Such samples of matches can be used, along with
a subjective evaluation function, to compute the subjective chanciness of a game. Unfor-
tunately, this does not help in the field of computer-aided game inventing, because newly
invented games by definition do not have extensive human match records.

18.4.3 Partial Substitution

The substitution approach and the use of human match records can be combined. The
issue of “style” makes the use of substitution difficult, because “style” affects the kind of
matches that will be played. However, by using human match records the problem of
“style” is eliminated. We can then substitute the human agents with bots of similar skill.

For bots of equal skill, the RPV will be identical to the RPV of the human lineup (since
skill is defined by expected results). However, there is still an assumption involved: We
usually measure the skill of agents by their expected results from the root position of
a game. Thus, the accuracy of the substitution depends on the assumption, that equal
playing strength at the root translates to equal playing strength for all other nodes.

We could of course select our substitute bots by comparing skill for a larger sample of
nodes. However, since we cannot test all nodes, this assumption remains to a degree.

For a population of human players, for which we have match records, partial substitution
allows the approximation of our measures cha and CHA.

18.5 Summary

The exact computation of chanciness and controllability depends on a detailed behavioral
model for all agents in a population. Such models are usually not available. For popu-
lations of computer agents, one alternative lies in the use of sampling algorithms. With
these sampling algorithms it is possible to approximate the chanciness of matches and the
chanciness of a game.

The approximation of our measures for human players is more difficult. We propose
that approximation may be accomplished by substituting appropriate computer agents.

Another possibility lies in the replacement of RPV with other evaluation functions. This
leads to the concepts of subjective chanciness and subjective controllability. Those measure
are applicable to human as well as computer agents.
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19 Model Games

In this chapter we demonstrate our measures of chanciness and controllability by applying
them to parameterized model games.

19.1 Sparrow and Pigeon

To illustrate how our measures chanciness and controllability can be used, we introduce the
game class “Sparrow and Pigeon” (SP[a,b]). Figure 19.1 shows the parameterized game
tree of this game class. We restrict the parameter b to the interval of the non-negative
real numbers (a ∈ R,b ∈ R+

0 ). The name of the game derives from the German proverb
“A sparrow in the hand is worth more than a pigeon on the roof” (The analogue English
proverb goes “A bird in hand is worth two in the bush.”). This name reflects the move
choices in this single-player game. The player can either take a risk by selecting the left
child node (hoping to catch the pigeon) or play it save (take the sparrow) by selecting the
right node.

1

a+ba-b a+1

0.5 0.5

Figure 19.1: The parameterized game tree of the SP[a,b].

An agent Xp who plays the game SP can be characterized by its probability p to play
the left node. We use the concept of influence and our measures of chanciness and control-
lability to analyze the game SP[a,b] for different parameters of a and b when played by
different agents (different parameters of p). As a simplifying assumption we consider the
measures CHA,CON for a population Π = {Xp} that consist of a single agent Xp, charac-
terized by parameter p. The sampling distribution Ψ then by necessity gives probability 1
to the lineup (Xp).
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19 Model Games

Using Definition 13.2 we derive the values of ME,E(| IC |) and E(| IP1 |).

ME = pa+(1− p)(a+1) = a+1− p

E(| IC |) = p(0.5|−b|+0.5|b|) = pb

E(| IP1 |) = p(a−ME)+(1− p)(a+1−ME) = 2p(p−1)
E(TI) = pb+2p(p−1)+ |a+1− p|

Using those terms we can express the chanciness and the controllability of SP when
played by Π.

CHA(SP[a,b],{Xp},Ψ) =
E(| IC |)
E(TI)

=
pb

pb+2p(p−1)+ |a+1− p|

CON(SP[a,b],{Xp},Ψ) =
E(|I1|)
E(TI)

=
2p(p−1)

pb+2p(p−1)+ |a+1− p|

The measures chanciness and controllability are undefined for two regions in the param-
eter space: {(a,b, p)|a = 0,b = 0, p = 1} and {(a,b, p)|a =−1,b ∈ R+

0 , p = 0}. Both regions
correspond to a deterministic agent who plays a deterministic game with reward zero.
Outside these undefined regions we can find games with different characteristics:

• The chanciness of SP[a,b] reaches its maximum of 1 in this regions: {(a,b, p)|a ∈
R,b > 0, p = 1}. This corresponds to a player who always selects the risky move with
the risk being nonzero. In this case, SP is purely a game of chance.

• The chanciness is exactly zero in two regions: {(a,b, p)|(a ∈ R,b = 0, p ∈ [0,1]} \
{(a,b, p)|(a = 0,b = 0, p = 1} and {(a,b, p)|a 6= −1,b ∈ R+

0 , p = 0}. The first region
corresponds to the case where the chance move has no influence, while the second
region corresponds to the case where the player never takes a risk.

• The controllability of the game CON(SP[a,b],{Xp},Ψ) reaches a minimum of zero
whenever the parameter p takes on one of the extreme values 0 or 1. This directly
reflects Lemma 13.5. Agents X0 and X1 are completely deterministic and thus have
influence zero.

• The controllability reaches its maximum at the point (a = −0.5,b = 0, p = 0.5). At
this point, the chance move has no influence and agent Xp exhibits uniform random
behavior. While the minimum of controllability reflects a general rule, the obser-
vation for the maximum of controllability does not hold for all games. This can be
seen with a slight modification of the SP game tree. The game tree in Figure 19.2
is derived from the game tree of SP by duplicating the right branch n times. An
agent who plays uniformly random on this modified game experiences matches like
the agent X1/n playing the regular game of SP. Thus, for increasing values of n the
influence of the uniform random agent approaches zero and the controllability tends
to zero as well.
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19.2 PaCRaWa
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a+ba-b a+1

0.5 0.5

a+1 a+1a+1{a+ba-b a+1

0.5 0.5

a+1 a+1a+1{
n-1

Figure 19.2: A modified version of the SP game tree.

• In those parts of the parameter space where |a| � b, |a| � 1 we find games that have
low values of chanciness as well as low values of controllability. These games are
strongly influenced by the match expectation ME. Since the individual match results
for these games are very predictable, this type of game is unsuited to recreational
play. Why play at all if the outcome is (almost) certain? On the other hand, this type
of game may represents the preferred scenario in the context of stochastic control
when the goal is to maximize predictability.

19.2 PaCRaWa

The game PaCRaWa (PaCRaWa[d,T,a]) is a zero-sum game for two players, created by the
author of this thesis. It was introduced in Part I to illustrate the measure of chanciness.
The rules of PaCRaWa were defined in Section 7.1. In that section we also presented
approximations of the chanciness, C(PCRW[d,T,a],A1,A2) for different parts of the param-
eter space and for different lineups (A1,A2). These approximations were obtained by the
sampling algorithms from Section 18.1.

In the following Section 19.2.1 we present measurements of CHA and CON, applied to
the same simulation data. In Section 19.2.2 we compare old and new measurements. In
Section 19.2.3 we compare both sets of approximated results to analytic values.

19.2.1 Approximated CHA and CON for PaCRaWa

In the game of PaCRaWa, agents must repeatedly decide between one “good” move and
one “bad” move. In Part I we used three agents who were each characterized by their
probability of taking the “good” move. Agent X always selects the good move and repre-
sents deterministic optimal play. Agent Y plays the “good” move with probability 0.75 and
agent Z selects both moves with equal probability 0.5. Agents Y and Z represent medium
level and novice level of play, respectively.

91



19 Model Games

For our measurements of CHA and CON we will use the population Π = (X ,Y,Z). The
lineups used in Part I will be represented by a special type of sampling probability Ψ. We
define PXY as the sampling probability which returns the lineup (X ,Y ) with probability
one.

Figure 19.3 shows measurements of cha and CHA for PCRW[d,T = 10,a = 0]. Two
different values of the “chance power” parameter d were used. Since PCRW is a two-
player zero-sum game, both players experience the same amount of chance influence.
Since in this case, CHA1 = CHA2 we give only one value (see Lemma G.7).

Just like in our previous PaCRaWa measurements, we see a positive correlation between
chanciness and chance power. This is consistent with the intuition that an increased impact
of coin flips on the payoff function increases the influence of chance. As in Part I, we also
see that stronger agents experience more chanciness. This is understandable, when we
recall that stronger agents also act more determined (see end of Section 13.3.4).

In contrast to Part I we can now appreciate the different perspectives of the players. In
all instances of our experiment, the “master” agent X has zero controllability. His behavior
is completely determined, and therefore his result is only influenced by chance and by his
opponent. Weaker agents generally have more influential moves and thus receive higher
controllability values. A notable exception can be found by comparing PXY and PXZ. In
these lineups, the stronger agent Y has higher controllability than the random agent Z.
This is caused by the different match expectation of both lineups. The weaker agent Z is
sure to receive a low result against the master X . This in turn diminishes the controllability
from the perspective of Z compared to Y . The advantage of X over Z also results in the
low chanciness values for that lineup.

d 0.1 1.0

Ψ CHA CON1 CON2 CHA CON1 CON2

PXX 0.98 0.00 0.00 0.98 0.00 0.00
PYY 0.08 0.46 0.44 0.43 0.28 0.28
PZZ 0.07 0.45 0.47 0.39 0.30 0.31

PXY 0.06 0.00 0.37 0.37 0.00 0.24
PY Z 0.05 0.26 0.30 0.29 0.20 0.21
PXZ 0.04 0.00 0.26 0.27 0.00 0.20

Figure 19.3: chanciness and controllability of PCRW[d,T = 10,a = 0] for different chance
powers d and different agents (1000 matches sampled, approximation error
≈ 0.01).
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19.2 PaCRaWa

19.2.2 Comparison of C and CHA

The definition of the chanciness C in Chapter 6 (Definition 6.1) is conceptually similar
to the definition of the chanciness CHA in Chapter 14 (Definition 14.7). CHA is more
general because it recognizes different player perspectives and is defined for a population
rather than for a single lineup. Another difference between both definitions lies in the
arrangement of the sources of influence (SI). The definition of C puts all player influences
into a single SI. The definition of CHA, on the other hand, recognizes each player as
a seperate SI. Since SI are compared according to their absolute influence values, this
results in a different denominator between both definitions.

Figure 19.4 shows a side by side comparions of approximated values for C and CHA in
the game of PCRW[d,T = 10,a = 0]. Approximation errors aside, the value of C is generally
lower than the corresponding value of CHA. This is to be expected, due to the triangle
inequality | IP1 + IP2 | ≤ | IP1 |+ IP2 |. The lower denominator for C results in a higher value
of C compared to CHA. Since the master agent X has zero influence, the values of C and
CHA are equal wherever he participates.

d 0.1 0.5 1.0

Ψ C CHA C CHA C CHA

PXX 0.97 0.98 0.98 0.98 0.98 0.98
PYY 0.11 0.08 0.37 0.29 0.53 0.43
PZZ 0.09 0.07 0.33 0.24 0.47 0.39

PXY 0.06 0.06 0.24 0.24 0.37 0.37
PY Z 0.05 0.05 0.21 0.18 0.34 0.29
PXZ 0.04 0.04 0.16 0.16 0.27 0.27

Figure 19.4: A comparison of chanciness measures C and CHA for the game of
PCRW[d,T = 10,a = 0]. Both measures were computed from the same simu-
lation data. (1000 matches sampled, approximation error ≈ 0.01).

Although the difference between the chanciness measures of Part I and Part II is notable,
the relations among the different data points were preserved.

19.2.3 Analytic results for the two chanciness measures
C and CHA

The chanciness of PaCRaWa according to both defintions was analyzed by Riedel [Rie 2010].
Figure 19.5 shows a side by side comparison of our approximative results for C and the
analytic results by Riedel. Riedel’s results confirm the accuracy of our approximated val-
ues.

Figure 19.6 shows a side by side comparison of our approximative results for the new
measure CHA and the analytic results by Riedel. Again, the accuracy of our approxima-
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d 0.1 0.5 1.0

Ψ A R A R A R

PXX 0.97 1.00 0.98 1.00 0.98 1.00
PYY 0.11 0.11 0.37 0.37 0.53 0.54
PZZ 0.09 0.09 0.33 0.33 0.47 0.50

PXY 0.06 0.06 0.24 0.23 0.37 0.38
PY Z 0.05 0.05 0.21 0.20 0.34 0.33
PXZ 0.04 0.03 0.16 0.15 0.27 0.26

Figure 19.5: A comparison of approximated and analytic results for the chanciness mea-
sure C. Columns marked with “A” contain our approximations, obtained by
sampling. Columns marked with “R” contain the analytic results of Riedel.

tions is confirmed by Riedel’s analysis.

d 0.1 0.5 1.0

Ψ A R A R A R

PXX 0.98 1.00 0.98 1.00 0.98 1.00
PYY 0.08 0.07 0.29 0.28 0.43 0.44
PZZ 0.07 0.06 0.24 0.25 0.39 0.40

PXY 0.06 0.06 0.24 0.23 0.37 0.38
PY Z 0.05 0.04 0.18 0.17 0.29 0.29
PXZ 0.04 0.03 0.16 0.15 0.27 0.26

Figure 19.6: A comparison of approximated and analytic results for the chanciness mea-
sure CHA. Columns marked with “A” contain our approximations, obtained
by sampling. Columns marked with “R” contain the analytic results of Riedel.
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20 “EinStein würfelt nicht!” and Variants
Thereof

“EinStein würfelt nicht!” is a board game designed by Ingo Althöfer [Alt 2004a]. The
game can be played at the online platform Little Golem [Mal 2002] where it is quite pop-
ular. The German title of the game is a play on words. It can be translated either as
“A single stone does not play dice” or “Einstein does not play dice”. This play on words
alludes to the game’s rules and is also a reference to Albert Einstein’s famous quotation
about God and dice. In this chapter we present approximate measurements of chanciness
and controllability for the original game and for several games variants.

20.1 Experimental Setup

20.1.1 Agents used in the Simulation

The results presented in this chapter were obtained by the sampling approach discussed
in Section 18.1. This was possible because we used populations which consist entirely of
computer agents.

For our experiments we have used agents that employ the Monte Carlo algorithm to
select their moves [Abr 1990, BH 2003]. Game states are evaluated by the mean result of
k random matches. The child move with the maximum value is then played. We denote
these Monte Carlo Agents as MCk, with k indicating the number of random matches. We
have also used the random agent, RND who selects among all possible moves with equal
probability. The playing strength of Monte Carlo Agents in the game of EWN grows with k
as shown in Figure 20.1.

One notable feature of Monte Carlo Agents is their independence from a particular
game’s rules. Such agents, if suitably programmed, can play a game based only on a
description of the game’s rules and without knowledge about strategies. This makes them
particularly suited in the field of computer-aided game inventing [Alt 2003] where such
knowledge is not available for newly invented games.

20.1.2 Approximation of RPV

As explained in Chapter 18.1.1 we approximate the relative positional values (RPV) by sam-
pling partial matches. This sampling is sped up by using the Lookup Sampling-algorithm
(Appendix B). For every relative positional value needed, we conducted 1,000 partial
matches 1.

1Some of the partial matches were stopped early by the Lookup Sampling-algorithm.
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20 “EinStein würfelt nicht!” and Variants Thereof

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1  4  16  64  256  1024  4096

W
in

 r
at

e 
ag

ai
ns

t r
an

do
m

 p
la

ye
r

Monte Carlo iterations k

Figure 20.1: Win rates in EWN of Monte Carlo Agents with different strengths versus the
random agent RND.

20.1.3 Sampling of Matches

For a game of n players and a population Π, the set of all possible lineups is given by the
set Πn with cardinality |Π|n. When not indicated otherwise, we have assumed an equal
sampling probability for all possible lineups.

For the population Π = {RND,MC1,MC8,MC64} and a game of 2 players, we have 16
possible lineups. In this case our sampling probability Ψ would therefore be the constant
function with value 1

16 .

In order to approximate the expected absolute influence of the different sources of in-
fluences, matches must be sampled from the set of all possible matches. To this end we
have simulated matches repeatedly for every possible lineup. To reflect our assumption of
equal probability, every lineup was repeated the same number of times. The added num-
ber of simulations matches for the individual lineups yields the total number of matches
(#Matches).

In order to conserve computing resources, the number of simulation matches had to be
limited. Whenever we present our simulation results, we will give the total number of
matches used (#Matches) and the estimated error (err) of our approximated measures.
The definition or our error estimate err for the chanciness of a game and the controllability
of a game is given in Appendix H. Wherever we only give one error value for CHA and
CON, it is the maximum of both values.
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20.2 “EinStein würfelt nicht!” (EWN)

20.2 “EinStein würfelt nicht!” (EWN)

20.2.1 Game Rules

The original game EWN is a two-player zero-sum game with perfect information. It is
played on rectangular board with 5 rows and 5 columns. The two players “White” (player
1) and “Black” (player 2) seek to move their playing pieces towards a goal square or to
eliminate their opponent.

Each player has six playing pieces, numbered one to six. Figure 20.2 shows a starting
position for EWN. The 6 grid positions (squares) in which the pieces of each player are
initially placed are fixed, while the order of the pieces is not fixed. One possibility is to
leave the order of the pieces to the players discretion. Another possibility is to randomize
the order of the pieces. This randomized approach is taken at the online platform Little
Golem and was also used for our simulation matches.

Player 1

Player 2

5

2

1

1

4

6

3

3

6

2

45

Figure 20.2: A starting position for EWN.

The players take turn rolling a six-sided die and then moving the piece with the same
number as the die result. Player White, who starts in the top-left corner, may move his
piece to the adjacent right square, to the adjacent lower square or to the adjacent diagonal
lower right square. Only moves that stay within the 5x5 grid are permitted. If the target
square of a move is occupied by a piece of either player, that piece is removed from play.
Player White wins the game if he moves a piece into the bottom-right corner square or if
all black pieces are removed from play.

Player Black, who starts in the bottom-right corner, has mirrored move options. His
pieces may move up, left, or up-left to an adjacent square. Black wins by moving a piece
into the top-left corner square or if all white pieces are removed from play.

If the result of the die indicates a piece that was already removed from play, the player
must choose another piece to make his move. If the die result was the number x, he may
choose either the piece with the minimum number higher than x or the piece with the
maximum number lower than x. If only one of those pieces remains, there is no choice.
Figure 20.3 shows a situation in which Black can chose among two different pieces for his
moves. Since the black pieces numbered 2 and 3 were removed, Black may move either
with piece 1 or piece 4 on a die result of 3.
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Figure 20.3: Move options of Black for the die result 3. Every arrow corresponds to a legal
move.

If a player has only a single piece left, that piece is moved every turn. It is then unnec-
essary to roll the die, hence the name of the game “A single stone does not play dice”. The
winning player of EWN is rewarded with a score of +1 while the losing player receives a
score of −1. The game EWN does not allow for a draw.

20.2.2 Analysis of an Example Match

The following match g = (L,P) was played by a lineup of Monte Carlo Agents, L = (MC64,
MC8). Agent MC64 played as White (player 1) and agent MC8 played as Black (player 2).
During this match the states in the sequence P = (s0,s1, . . . ,s15) were visited.

Figure 20.4 shows the sequence of states in g from left to right and from top to bottom.
The first move is used to determine the initial placement of the pieces. Afterwards, chance
moves and player moves alternate. The game ends after 8 chance moves and 7 player
moves with a win for White.

Figure 20.5 gives the approximated RPV for the 16 game states from the perspectives of
either player. Since EWN is a zero-sum game, the values for player 1 and 2 differ only in
their leading sign. The standard error of these values is ≈ 0.01 (sample standard deviation
of ≈ 0.03, sample size of 1,000).

At first glance the table of RPV reveals that player White has quite an advantage right
from the beginning. The positive influence of the first chance move (+0.02) suggests that
White may have been further advantaged by getting an above-average placement of his
pieces.

Fur further analysis of g we compute the influence of the SI (sources of influence, Page
51):

ME1(g) = 0.38, ME2(g) =−0.38

IC1(g) = 0.36, IC2(g) =−0.36

IP1,1(g) = 0.06, IP1,2(g) =−0.06

IP2,1(g) = 0.20, IP2,2(g) =−0.20
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Figure 20.4: All game states of match g from left to right and from top to bottom. States
that require a chance move are marked with the symbol “?”.
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20 “EinStein würfelt nicht!” and Variants Thereof

node-type index i Ṽ1(si,L) Ṽ2(si,L)

chance 00 0.38 - 0.38
chance 01 0.40 - 0.40
player1 02 0.37 - 0.37
chance 03 0.40 - 0.40
player2 04 0.46 - 0.46
chance 05 0.55 - 0.55
player1 06 0.49 - 0.49
chance 07 0.50 - 0.50
player2 08 0.59 - 0.59
chance 09 0.60 - 0.60
player1 10 0.56 - 0.56
chance 11 0.58 - 0.58
player2 12 0.64 - 0.64
chance 13 0.74 - 0.74
player1 14 1.00 - 1.00
terminal 15 1.00 - 1.00

Figure 20.5: Approximated RPV for the match g = (L,P),L = (MC64,MC8).

We see that the match expectation along with the influence of chance were the dominating
influences on this match. The victory of White was also aided by tactical errors of Black.
This assessment is reflected in the values of chanciness and controllability:

cha1(g) = cha2(g) = 0.36

con1(g) = 0.06

con2(g) = 0.20

From the perspective of White the match appears rather boring (if we put ourselves in
the shoes of the computer agents). The low controllability indicates that White’s overall
influence was low. That means he neither performed far below or above his usual skill.

On the other hand, the moves of player Black were more consequential, as shown by
the higher controllability value from his perspective. In retrospect, this player should find
the match interesting because some of his moves were worse than usual.

Either way, the influence of chance was more influential than the moves of either player.
This can be seen by comparing the chanciness value to either controllability value.

20.2.3 Analysis of the Game

In this section we present our approximations of chanciness and controllability for the game
EWN, using different populations. Figure 20.6 shows the values of CHA, CON1 and CON2.
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20.2 “EinStein würfelt nicht!” (EWN)

Since EWN is a two-player zero-sum game, the chanciness of both player perspectives is
equal. For every population Π with cardinality |Π|= k we have used the constant sampling
probability Ψ(L)≡ k−2.

Π CHA CON1 CON2 #Matches err

{RND} 0.43 0.26 0.26 128 0.022
{MC1} 0.48 0.22 0.26 128 0.021
{MC8} 0.54 0.20 0.21 128 0.019
{MC64} 0.66 0.15 0.12 128 0.013
{MC512} 0.77 0.08 0.08 100 0.016

{MC8,MC64} 0.54 0.16 0.16 512 0.009
{MC1,MC8,MC64} 0.45 0.17 0.17 1152 0.006
{RND,MC1,MC8,MC64} 0.39 0.17 0.17 2048 0.005
{MC1,MC512} 0.27 0.12 0.10 200 0.014

Figure 20.6: Measurements of CHA and CON for the game EWN using different popula-
tions Π. All lineups from Π×Π were sampled the same number of times.
Since for this game CHA1 equals CHA2, only one value is given.

Our results reveal that both players roles have very similar controllability. While the
equal chanciness is a direct result of the zero-sum payoff structure, equal controllability for
both perspectives cannot generally be expected. In this case, it tells us that both player
perspectives are balanced in respect to their self-influence2. From the standpoint of a
game inventor this is a sign of quality.

We also note the trend of increasing chanciness for populations of higher skill (repre-
sented by populations of a single agent). Just as the chanciness grows, the controllability of
both perspectives is equally diminished. In the lower half of Figure 20.6 we see the trend
of decreasing chanciness along with the increasing spread in population skill (spread of
agent skill within the population). This decrease is not accompanied by a raise in con-
trollability. We can explain this trend by the increased skill range within the different
populations. This results in matches where the result is mainly influenced by the match
expectation. While such unequal matches are not more controllable, they are much less
subject to the influence of chance.

An important question not answered by our measurements relates to the interpretation
of our results for human agents. Are any of the tested populations representative for
a given human population? We suspect that the Π = {RND,MC1,MC8,MC64} could at
most represent a population of novice players, while the population Π = {MC512} better
represents average human skill. Due to resource constraints we did not test Monte Carlo
Agents of higher playing strength. The required simulation matches for Figure 20.6 took

2And since EWN is a zero-sum game, the absolute influence on one’s own results is equal to the influence
on the opponent’s result.
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20 “EinStein würfelt nicht!” and Variants Thereof

approximately 400 CPU hours on 1GHz Opteron processors.

20.3 The Variant EWN

20.3.1 Rules of EWN

The game EWN is a close variant of the original game EWN. It was already introduced in
Chapter 7 where it was used to measure the effect of reduced move choices on chanciness.
The only rule change pertains to the selection of pieces whenever the die indicates a piece,
that has been removed from play. In EWN the player always has to move the piece with
the minimum number higher than the die result. If no such piece exists, the piece with
the minimum number must be used. Because of this rule change, some situations in EWN
offer fewer move choices than they would in EWN.

20.3.2 EWN Compared to EWN

CHA CON1 CON2

Π EWN EWN EWN EWN EWN EWN

{RND} 0.43 0.44 0.26 0.24 0.26 0.27
{MC1} 0.48 0.52 0.22 0.23 0.26 0.22
{MC8} 0.54 0.57 0.20 0.19 0.21 0.19
{MC64} 0.66 0.70 0.15 0.12 0.12 0.12
{MC512} 0.77 0.80 0.08 0.07 0.08 0.06

{MC8,MC64} 0.54 0.58 0.16 0.15 0.16 0.14
{MC1,MC8,MC64} 0.45 0.49 0.17 0.16 0.17 0.16
{RND,MC1,MC8,MC64} 0.39 0.45 0.17 0.16 0.17 0.16
{MC1,MC512} 0.27 0.35 0.12 0.10 0.10 0.10

Figure 20.7: Comparison between the games EWN and EWN for the measures CHA, CON1
and CON2. The same lineups and number of matches were used as for the
measurements from Figure 20.6. The estimated error was roughly the same
as the estimate from Figure 20.6.

To compare the game variant EWN to the original game EWN we have repeated the
measurements from Section 20.2.3 for EWN. We used the same lineups and number of
matches as reported in Figure 20.6. The error estimates for these new simulations were
roughly the same as those reported before. Figure 20.7 shows a side-by-side comparison
of our results.

The most obvious feature of Figure 20.7 are the consistently higher chanciness values for
EWN compared to EWN. At the same time each player perspective generally experiences
lower controllability (the exceptional data points can be attributed to the approximation
error). The change in controllability between EWN and EWN appears less pronounced
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20.4 “EinStein würfelt nicht Solo” (EWNS)

that the change in chanciness. One explanation for this phenomenon comes from the fact
that the added influence-loss of both players is expressed in the higher chanciness value.

All in all, the results from Figure 20.7 confirm our findings from Part I of this thesis:
Reducing the choice of moves in the game of EWN results in a game which is more depen-
dent on chance.

20.4 “EinStein würfelt nicht Solo” (EWNS)

Ingo Althöfer, the author of EWN, has suggested a single-player version of his game. We
present this game variant under the name “EinStein würfelt nicht Solo” (EWNS).

20.4.1 Rules of EWNSk

In EWNS a single player attempts to move one of his pieces to the goal position in the far
corner of the board as fast as possible. If the player succeeds in k or less moves he wins,
otherwise the player loses. In regard to the parameter k, EWNS can be considered a set of
games with the elements EWNSk, k ∈ N. If the player wins he is awarded with a score of
+1, otherwise he receives a score of −1. Figure 20.8 shows the initial board position that
was used during all simulation matches (the order of the pieces was not randomized).

5

2

1

4

6

3

Figure 20.8: The starting position for EWNS. All matches used the same layout of the
pieces.

20.4.2 Analysis

In this section we present our approximations of chanciness and controllability for the
game “EinStein würfelt nicht Solo” (EWNSk), using different populations. We have also
tested different values for the rule parameter k. Figure 20.9 shows the results of our
measurements. A column-wise comparison reveals the strong dependence of chanciness
and controllability on the parameter k. This should come as no surprise, since the game is
extraordinarily hard if only 5 moves are allowed. On the other hand, the game becomes
very easy if 15 moves are allowed to complete the objective.
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20 “EinStein würfelt nicht!” and Variants Thereof

Matches which are almost invariably lost allow for little influence on the match result.
Thus we see low values of CHA and CON in the first two columns of Figure 20.9. Nev-
ertheless, we see that there is some influence, based on the skill of the playing agent. At
the same time that the controllability rises for stronger agents, the chanciness rises as well.
This is understandable, because chance can only affect the likelihood of winning if a win
is not entirely impossible.

The situation is somewhat reversed in the rightmost columns. Here, the matches are
mostly won, which leads to low chanciness and low controllability. Only the more incom-
petent agents actually manage to lose matches with parameter k = 15. Thus we see higher
controllability only for agents RND and MC1. If matches can actually be lost, then the
influence of chance is more relevant as well.

k 5 7 10 12 15

Π CHA CON CHA CON CHA CON CHA CON CHA CON

{RND} 0.04 0.02 0.12 0.10 0.36 0.25 0.50 0.38 0.36 0.30
{MC1} 0.06 0.05 0.22 0.17 0.59 0.28 0.51 0.26 0.29 0.16
{MC8} 0.10 0.04 0.38 0.18 0.52 0.23 0.27 0.16 0.07 0.04
{MC64} 0.16 0.08 0.64 0.13 0.43 0.10 0.12 0.05 0.01 0.01

Figure 20.9: Chanciness and Controllability for the game EWNSk, each lineup was sampled
100 times. The estimated error is ≈ 0.02.

Most interesting are the middle columns of Figure 20.9. Here we notice peaks in chanci-
ness and controllability. Within the table, the highest values of CHA and CON for agent
MC64 are recorded for k = 7. For weaker agents the peaks occur for increasingly higher
values of k. Away from the peak value of k, the game is highly determined by the match
expectation. When comparing the proportion of CHA and CON near their peaks among
the different agents, we notice that agent MC64 is on the verge of mastering the game.
The controllability for that agent drops remarkably in comparison to the peak value for
MC8.

Based on our limited selection of parameters, the game EWNSk appears most “exciting”
for the agent RND given a value of k = 12. This is a point where the match expectation is
close to zero3. Yet, even for this agent the chanciness is still higher than the controllability
of EWNS12. For agents of increasingly higher skill, the parameter k, where losing and
winning are equally likely, will shift downwards. By necessity, a point will be reached
where agents have mastered the game (zero controllability) and EWNSk is completely
dominated by chance.

3Since match results are only influenced by the SI, ME, IC, IP1, we can calculate the relative expected influ-
ence of the match expectation as 1−0.50−0.38 = 0.12.
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20.5 “EinStein würfelt nicht Tetra” (EWNT)

“EinStein würfelt nicht Tetra” is a four player variant of EWN, also suggested by the orig-
inal author of EWN, Ingo Althöfer.

20.5.1 Rules of EWNT

EWNT is a general-sum game played by four players. The initial position for this game is
shown in Figure 20.10. The movement of the pieces for the top-left player (White) and
the bottom-right player (Black) is the same as in EWN. The players that start in the top-
right corner (Gray) and in the bottom-left corner (Ring) have the move options (down,
left, down-left) and (up, right, up-right) respectively. The players take turn in clockwise
order beginning with White (White, Gray, Black, Ring). As in the game of EWN, chance
moves and player moves alternate.

Player 1

Player 2

Player 3

Player 4

1

2

3 12

3

1 2

3

1

2

3

Figure 20.10: The starting position for EWNT. All matches used the same layout of the
pieces.

Each player seeks to be the first to move a piece towards the corner square opposite of
his starting position. The first player to succeed ends the game. Should the pieces of all
but one player be eliminated, the games ends as well.

A player who manages to reach the opposite corner receives a reward of +1. A player
who has lost all pieces receives a result of −1. A player who keeps at least one piece but
does not reach his goal receives a result of 0. A player who manages to eliminating all
opponent pieces also receives a reward of +1 The number of players eliminated in any
match ranges from zero to three. The sum of all player rewards is therefore in the range
of [−2,1]. Accordingly, the game EWNT is a non-zero-sum game.

EWNT bears strong similarities to the four player variant “EinStein würfelt nicht Quat-
tro” [Alt 2004b] (EWNQ), also by Ingo Althöfer. However, EWNQ puts the players in two
teams of two players each. Due to this team setup, EWNQ could actually be analyzed as a
two-player zero-sum game.
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20 “EinStein würfelt nicht!” and Variants Thereof

20.5.2 Analysis

In this section we present our approximations of chanciness and controllability for the
game “EinStein würfelt nicht Tetra” (EWNT), using different populations. Since EWNT is
a game of four players, we distinguish four values of CHAi and four values of CONi.

Π CHA1 CHA2 CHA3 CHA4 #Matches err

{RND} 0.20 0.21 0.19 0.23 100 0.018
{MC1} 0.25 0.22 0.23 0.26 100 0.020
{MC8} 0.31 0.31 0.33 0.34 100 0.023
{MC64} 0.44 0.43 0.40 0.43 100 0.025
{MC512} 0.52 0.52 0.50 0.45 100 0.026

{MC8,MC64} 0.35 0.35 0.35 0.36 256 0.015
{MC1,MC8,MC64} 0.30 0.30 0.30 0.31 1296 0.006
{RND,MC1,MC8,MC64} 0.27 0.27 0.27 0.27 4096 0.003
{MC1,MC512} 0.31 0.33 0.32 0.33 512 0.011

Figure 20.11: Measurements of CHA1 for the game EWNT using different populations Π.
All lineups from Π×Π were sampled the same number of times.

Figure 20.11 shows our measurements for chanciness together with the number of simu-
lation matches and our estimated error. The player roles 1 to 4 correspond to the previous
designation of (White, Gray, Black, Ring). The simulation matches, on which these values
are based, required approximately 1600 CPU hours of computation time on 1GHz Opteron
processors. In Appendix I we present additional result statistics for these simulations.

A column-wise comparison shows about equal chanciness for all four player perspec-
tives. This is particularly obvious for the two bottom rows, where the estimated error is
low. Similar to our observations for the game of EWN, we notice increasing chanciness as
the skill level of the population grows (rows 1 to 4). However, the overall level of chanci-
ness is lower by about 20% compared 4 to the same populations playing EWN (see Figure
20.6). This can be understood by considering that the influence of other players is much
greater in EWNT (there are three other players instead of just one).

In the lower half of Figure 20.11 we see the familiar trend of decreasing chanciness
along with the increasing spread in population skill. Again, we can explain this trend by
the increased number of matches between agents of highly unequal skill. This leads to
matches where the result is more strongly influenced by the match expectation. However,
for the population Π = {MC1,MC512} the trend is broken. This might be explained by
the relatively “deterministic” behaviour of agent MC512 which lowers the overall level of
player influence and thus increases the importance of chance. That this agent should act
far more determined than the other agents can be inferred from the low chanciness values
in the following Figure 20.12.

4Since chanciness is a relative measure on a fixed scale of [0,1] it makes sense to compare values in terms of
percentages.
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Π CON1 CON2 CON3 CON4 #Matches err

{RND} 0.20 0.18 0.21 0.17 100 0.018
{MC1} 0.16 0.17 0.22 0.19 100 0.020
{MC8} 0.17 0.15 0.15 0.16 100 0.015
{MC64} 0.12 0.14 0.14 0.12 100 0.014
{MC512} 0.12 0.11 0.11 0.11 100 0.015

{MC8,MC64} 0.15 0.16 0.14 0.14 256 0.010
{MC1,MC8,MC64} 0.16 0.16 0.16 0.15 1296 0.004
{RND,MC1,MC8,MC64} 0.16 0.16 0.16 0.16 4096 0.002
{MC1,MC512} 0.14 0.14 0.14 0.14 512 0.007

Figure 20.12: Measurements of CON1 for the game EWNT using different populations Π.
All lineups from Π×Π were sampled the same number of times.

Figure 20.12 shows our measurements for the controllability of EWNT, based on the
same simulation matches as Figure 20.11. Again, a column-wise comparison shows about
equal controllability for all four player perspectives. For populations of increasing skill
level we also notice a slight trend for decreasing controllability. This is less pronounced
than for the game of EWN. Presumably, because the controllability levels of EWNT are
lower overall. For populations with different spread in agent skills we see only slight
changes in controllability. We take this as an indication that the skill differences within
our populations are not very important compared to the other influences5. Overall we
notice that the game EWNT has rather lower controllability. While the chanciness of this
game is not high either, prospective players should be aware that chance has significantly
more influence on their results than their own actions.

20.6 Summary

In this chapter we have presented approximate measurements of chanciness and control-
lability for games from the “EinStein würfelt nicht!”-family. All these games require the
frequent use of dice rolls during their matches. Our measurements have shown that the
influence of these dice rolls makes a major contribution to match results. However, the
relative importance of chance also depends on the populations who play these games. The
results in this chapter also demonstrate that our measures can be effectively approximated
using populations of computer agents.

5See the analysis of the match expectation in Section 16.2.
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21 Conclusion

21.1 Results

This thesis aimed to characterize the influence of chance and skill on games. We were
able to provide such a characterization based on two major assumptions:

• Influence is a property of game moves.

• Influence is the change in value between game states.

Using these assumptions we were able to quantify and compare different influences on
game results. We have defined the measures of chanciness and controllability for general-
sum games of perfect information with an arbitrary number of players. Both measures
are defined in reference to a population of agents. A high value of chanciness indicates
a game of chance while a high value of controllability indicates a game of skill. Our
measures reveal the following important aspects of chance and skill in games:

• The character of a game depends on the features of the game tree.

• The character of a game depends on the behavior of the players.

• The character of an n-player game may differ among the n parties.

• There exist games that neither qualify as game of chance nor as game of skill.

The exact computation of chanciness and controllability is typically constrained by in-
complete knowledge of agent behavior. The computation is unfeasible for games with
deep trees because depth contributes exponentially to the cost of computation. However,
we have shown that our measures can be approximated with reasonable accuracy using a
polynomial time algorithm 1. This algorithm is based on sampling matches between com-
puter agents. Additional effort is required to select agents with behavior representative of
a human population.

21.2 Directions for Further Research

21.2.1 Empirical Studies

The measures developed in this thesis allow to make predictions about the relative char-
acteristics of different games such as: game G is more strongly influenced by chance than

1Computational cost is polynomial in the depth of the game tree.
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game H. These predictions should be tested against comparisons undertaken by human
game testers.

It seems to us that the concepts of subjective chanciness and subjective controllability (see
Section 18.2) are a particularly promising area for empirical studies. These measures have
the potential of being very fast approximations for chanciness and controllability.

21.2.2 Diplomatic Interactions

A crucial limitation of our game model can be found in its ignorance of communication
and diplomacy. In games that allow for cooperation and alliance-building, communication
is a major tool for influencing match results. When there is only one player, the effect
of communication can obviously ignored. Likewise, two-player zero-sum games do not
allow for cooperation. Hence, it is justified to model such games without communication.
However, as soon as one enters the realm of two-player general-sum games and multi-
player games, communication can hardly be ignored.

We note that the effectiveness of communication depends on psychological factors,
which are hard to grasp, as well as the tactical options of a game. If a game allows for
obviously punishing or rewarding moves, they can be used to reinforce the effectiveness
of verbal threats and promises.

Psychological agent models are probably out of reach in the foreseeable future. To fully
account for the influence of communication, one would have to define a set of commu-
nication primitives. These basic elements of communication could the be treated as a
new kind of “move” available to each player. It appears even more difficult to us to ac-
count for the “internal state” of the participating agents which would be affected by those
communication-moves.

We propose that properties of the bare game tree can be used to compute limits on the
effectiveness of diplomacy. Diplomacy is concerned with the give and take of in-game
advantages. Consequently, if a player i wishes to make demands towards another player
j, he must be able to influence the results of player j. At the same time he can only gain
from diplomacy if that other player is able to influence the results from the perspective of
player i.

Such influence values may be obtained using the definition of influence proposed in
this paper. A table such as the one in Figure 15.2 might than be the preferred tool for
describing a game. This table holds the influence of every SI (match expectation, chance
and each player) on every player.

21.2.3 Games of Imperfect Information

Our measures of chanciness and controllability cannot be applied to games with imperfect
information. These games confront players with a novel type of unpredictability. Players
do not always know the exact game state they are in. Instead they have to plan their
moves based on a probability distribution over a set of states they might be in (this is
called an information set [SLB 2008, 164]). During a match, information that is deduced
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or directly uncovered may lead to a change in that probability distribution. From the
perspective of a player such a change in probability distribution is very similar to the
effect of a chance move. To describe the chanciness of a game of imperfect information
would therefore require to account for the influence of such information changes. We see
a major problem in modeling the way agents deduce information based on the behavior
of their opponents. Since the opponent’s actions may also be based on opponent models
this potentially leads to an infinite regression of models about models about models.

The work of Borm, Dreef and Genugten (BDG) avoids this problem by focussing solely
on the final payoffs of their three agent types. Dreef concludes that Poker is a game of skill:
“Comparing the skill level, 0.3997, to the highest bound between games of chance and
games of skill that was advised by Van der Genugten (1997), 0.15, leads undisputedly to
the classification of the poker game with raising as a game of skill.”[Dre 2005]. It would
be desirable to extend our concepts to games of imperfect information and to compare
results with those of BDG in that area.

21.2.4 Internal Chance

Our agent model does not discuss the internal mechanism by which agents select their
moves. It simply assumes that their behavior can be described stochastically. This does not
allow us to distinguish between fluctuations of agent skill and deliberate randomization.
Deliberate randomization is called internal chance by BDG. Internal chance is encountered
in mixed strategies employed to play games of imperfect information. However, it may
also occur in multi-player games of perfect information because an agent is unable to dis-
criminate among his move options. Randomization would then be a way to avoid system-
atic errors. Yet another reason to randomize moves could be found in diplomacy. Faced
with the option of willfully harming one player or another, the active player may instead
randomize his choice to absolve himself of diplomatic responsibility and avoid making an
enemy. One could argue that such intentional randomization, (if openly acknowledged)
contributes to the influence of chance and should therefore increase the chanciness.

Nevertheless, within our framework such randomization would lead to an increased
influence of other players upon the affected player and thus decrease the controllability of
the affected player.

21.2.5 Lawmaking

If the chanciness of a game (given the relevant population) is high, it should be called
a game of chance. Deciding on a threshold to separate games in two classes is difficult,
as it will lead to almost-similar games being treated completely different. One approach
suggested by BDG [BvdG 2001] is to use games that are classified without or with little
dispute as markers and classify other games in relation to these markers. This approach
applies to our measures as well: If Backgammon is allowed as a game of skill and some
other game G exhibits less chanciness than Backgammon, then G should not be classified
as a game of chance.
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The question of controllability is another matter: A game may have at the same time low
chanciness and low controllability. One class of examples would be unfair games: In the
German State Lottery, Süddeutsche Klassenlotterie, the payout ratio is about 50% [Nie 2008].
A player who is committed to bet a fixed amount faces an expected loss of half his stake.
The player’s choices for filling in his lottery ticket are independent of the process which se-
lects lottery winners. Thus, we can assume a controllability of zero (the controllability may
be slightly above zero when taking into account strategies which avoid shared winnings).
Together with the high expectation of a loss, this results in a chanciness of ≈ 0.5. Even
though the lottery is less influenced by chance than a single pass at the Roulette table, we
do not suggest, that this makes it more desirable from a societal standpoint. We would
rather call into question the general concept of the gambling law.

Another example of games with low chanciness and low controllability comes from de-
terministic games with many players. The game of Chinese Checkers has zero chanciness,
yet it also lacks controllability when three or even five other players constantly change the
board. We find it difficult to select one of both attributes as more relevant: The game
is clearly not a game of chance, yet it has similar controllability to a game of chance. If
Chinese Checkers was played for money (a typical requisite for the application of gambling
law), we could offer no help on classifying it.

21.3 Summary

In this thesis we have developed measures for the quantification of chance and skill in
games. Our work was build on the assumption that influence is a property of game moves.
This allowed us to describe the influence of chance and skill through the study of individ-
ual moves, taken in individual matches.

We have defined the measures of chanciness and controllability for general-sum games
of perfect information with an arbitrary number of players. Our measures rate the influ-
ence of chance and the influence of players on their own results, on the interval [0,1]. A
high value of chanciness indicates a game of chance while a high value of controllability
indicates a game of skill. We have shown that games can be low on both, chance and skill,
and that a single one-dimensional measure is insufficient to describe all games.

Our analysis has further revealed that it does not suffice to look at the structure of a
game (its game tree). It is also necessary to consider the behavior of the agents who
play the game. For this reason, our measures are defined in reference to a population of
agents. The dependency on agent behavior complicates the effective computation of our
measures. It can also be understood as the reason why results on the relationship between
chance and skill are scarce. Asking about this relationship without giving assumption
about agents leads to an under-determined question. However, we have shown that the
chanciness and controllability can be effectively approximated for example games when
taking the agents into account.

The measures of chanciness and controllability contribute to the theoretical characteri-
zation of games. When used in conjunction with computer agents they also provide a tool
in the arsenal of game inventors.
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A Lottery Chess

Lottery Chess is an artificially designed class of games to reveal an inconsistency in the
notion of Relative Skill [Dre 2005]. Lottery chess has two parameters n,k ∈ N. There exist
realizations of the parameters n,k for which the resulting games receive a rating of Relative
Skill which in our opinion contradicts common sense on the notions of skill and chance.

Lottery chess is almost identical to the classical game of chess. As the only difference,
each player secretly selects an integer from [0,1, . . . ,n] before the start of the chess match.
The winner of the match receives a score of 1. Additionally a lottery takes part. A random
integer from [0,1, . . . ,n] is drawn. Should a player have guessed that number he receives
an additional score of k.

The influence of chance on the game outcome can be made arbitrarily small by in-
creasing n. As n grows, the likelihood that one of the players correctly guesses the lottery
number decreases to zero. At the same time the Relative skill (in the sense of Dreef) can be
made arbitrarily small by increasing k. This follows because the fictive player always wins
the lottery no matter its odds. As k grows, this advantage of the fictive player overshadows
any advantage of being good at chess.

By choosing large values for n and k (such as n = 103,k = 106) we can create a game
that has a Relative Skill rating near zero. Equation 2.1 gives

RS =
gainoptimal−gainbeginner

gainfictive−gainbeginner

=
1.001−0.001

1000001−0.001
< 10−6

However, the result of that game when played by any human or algorithm will be mostly
determined by skill at chess and will therefore be a game of skill. As a game cannot be
a game of skill and a game of no skill at the same time, the definition of Relative Skill
is contradictory. In the defense of the RS, it must be noted that this extreme behavior is
unlikely to show up in a typical game.
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B Lookup Sampling

B.1 Lookup Sampling for Two-Player Zero-Sum Games

In Part I (Section 4.3) we introduced relative positional values (RPV) and in Section 4.4
we explained how to approximate them with Monte Carlo Methods. The efficiency of that
sampling algorithm can be improved when calculating RPV for consecutive game states of
a match. We call our improved algorithm Lookup Sampling.

Let g = (X ,Y,(s0, . . . ,sn)) be a match of game G between the agents X and Y. To calculate
the relative influence of chance of g, we need the values Ṽ(si,X ,Y ) for all si in g.

According to Equation 4.3 we can calculate the Ṽ(si,X ,Y ), given the RPV for all child
nodes of si and the probabilities of all child nodes to be selected in a match between X
and Y. Lookup Sampling exploits this Equation to speed up our sampling algorithm.

We approximate the RPV in the backward sequence for (sn,sn−1, . . . ,s0). When approxi-
mating Ṽ(si,X ,Y ) we start a simulation match and sample a child node s′i for si (by query-
ing an agent or simulating a chance move according to the rules of G). If that child node
s′i is identical to the node si+1 from g we immediately return Ṽ(si+1,X ,Y ) as the value of
that simulation match. Otherwise we continue the simulation match until a leaf node is
reached. The average result of all simulation matches is then used as our approximation
of Ṽ(si,X ,Y ).

Because the comparison of s′i and si+1 can be accomplished in constant time (via Hash-
ing) we can save time by stopping our simulation early. This total gain in computing speed
depends on the probability of si+1 to be sampled. If (si,si+1) happens to be a “deterministic
move” (Section 4.5) the sampling for Ṽ(si,X ,Y ) always stops after the first move.

For the game of PaCRaWa played by two agents of type Z (fully random), the running
time is roughly halved compared to the original algorithm. This is to be expected as
every simulation game has a 50% chance of being replaced by a table lookup after the
first move. Moreover, Lookup Sampling improves the accuracy of influence calculations.
Let m = (si,si+1) be a “deterministic move” by agent X . According to Observation 4.6,
the influence of m is zero. With regular Monte Carlo sampling, the influence of m is the
difference of two approximated RPV. It is very unlikely that both approximations return
the same value and thus yield an influence of zero. With Lookup Sampling, Ṽ(si,X ,Y )
equals Ṽ(si+1,X ,Y ) exactly, because every simulation match for si returns Ṽ(si+1,X ,Y )
as its result. Even though Ṽ(si+1,X ,Y ) is only an approximation, the influence of m is
calculated as zero.

The game PaCRaWa[d = 1,T = 10,a = 0] (Section 7.1) played by two optimal (and de-
terministic) agents X is fair (ME = 0). Because chance generally has an influence on
the match result and the deterministic agents have no influence at all, the chanciness
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B Lookup Sampling

C(PaCRaWa[d = 1,T = 10,a = 0],X ,X) is 1. Given 1000 samples per game state and 100
matches, regular Monte Carlo sampling approximates the chanciness as 0.88 while Lookup
Sampling achieves an approximation of 0.98.

B.2 Lookup Sampling for General-Sum Games with n Players

In Part II of this thesis we generalize the concept of RPV for the class of general-sum games
with n players. This generalization can be applied to the Lookup Sampling-algorithm in a
straightforward manner.

Every occurrence of the term Ṽ(s,X ,Y ) in the preceding section must simply be replaced
by the generalized term Ṽi(s,L).
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C Bounding chanciness and controllability
for a Small Game.

In Section 17.3 we have introduced a game and asked about the bounds of chanciness and
controllability. The game, which we denote as G is shown again in Figure C.

terminal nodeu

Chance node

X
Player X node

1

-1

0.01 0.99

1 -1 1

0.5 0.5

Figure C.1: A small single-player game with chance and player nodes.

Since game G is a single-player game, it is sufficient to consider all populations with a
single agent. Furthermore, G only contains a single player node with two children. This
allows us to characterize our agent with a single parameter p, the probability of selecting
the left child node.

To express chanciness and controllability as a function of p we look at the input terms
ME,E(| IC |), and E(| IP1 |) as functions of p (see Chapters 14, 15). We deduce the terms
as follows:
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C Bounding chanciness and controllability for a Small Game.

Q := 0.01 prob. to enter the left subtree

V (p) = p · (−1)+(1− p) · (+1)
= 1−2p expected value of the player node

E(| IP1 |) = A(p) = Q [p(−1−V (p)+(1− p)(1−V (p))]
= Q ·4p(1− p) expected abs. influence of the player

|ME | = M(p) = |Q ·V (p)| abs. match expectation

E(| IC |) = C(p) expected abs. influence of chance

= Q|V (p)−M(p)) left subtree

+0.5(1−Q)|0−M(p)−1| right subtree, leaf node -1

+0.5(1−Q)|0−M(p)+1| right subtree, leaf node 1

CHA(p) =
C(p)

C(p)+A(p)+M(p)

CON(p) =
A(p)

C(p)+A(p)+M(p)

Figure C shows the chanciness as a function of p. The chanciness
CON(G,{Xp},{({Xp},1)}) is computed for a population that consists only of the agent Xp

(the lineup (Xp) occurs with probability 1).
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Figure C.2: The controllability of G as a function of the agent parameter p.

The locations of the extremum values given in Section 17.3 were obtained by visual
inspection of the rather obvious plots.
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D Proof that |E(IC)| ≡ 0

The term IC (short for ICi(g), defined in Chapter 14) is a sum of the influence of all
chance moves in g from the perspective of player i. The expectation operator applies to
the random match g = (L,P) which is the result of a randomly selected lineup L and a
random sequence of game states P = (s0,s1, . . . ,sk). The parameter i is fixed.

Due to the linearity of the expectation operator it is sufficient to show that every sum-
mand of IC has an expected influence of zero.

We will first show that the jth summand of ICi(g) is zero under some conditions. The
jth summand has the form I(m,L, i) with move m = (s,s′). Let L and s both be fixed but
arbitrary. Let S denote Children(s) and let p(s′) denote the probability that chance will
move from the fixed node s to an arbitrary child s′.

E(I(m,L, i)) = ∑
s′∈S

p(s′) · (Ṽi(s′,L)− Ṽi(s,L))

= ∑
s′∈S

p(s′) Ṽi(s′,L)−∑
s′∈S

p(s′) Ṽi(s,L)

= Ṽi(s,L)−∑
s′∈S

p(s′) Ṽi(s,L) by Definition 13.1

= Ṽi(s,L)− Ṽi(s,L) ∑
s′∈S

p(s′) = 0

The lineup L and the node s used above were fixed but arbitrary. Thus, the law of total
expectation applies and the expectation of the jth summand is zero in the general case �

Corollary: The expected absolute influence of any player on the result of any other player
is zero.

|E(IP j,i)| ≡ 0 for any player roles j, i (D.1)

This follows from the above proof when the probabilities for chance moves are replaced
by the probabilities for players moves. These probabilities are well defined as the node s
is then a player node for the specific player j. The move probabilities of agent A j are well
defined by the lineup L = (A1,A2, . . .An). Both s and L are conditionally fixed. �
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E Exemplary Calculations of cha for a match
of Game Gexample

In Section 14.2 we have calculated the chanciness of match h from the perspective of player
2. Match h = (L,P) is a match of game Gexample. The lineup L = (A1,A2,A3) consists of the
agents defined in Section 12.2.

Here we repeat this calculation for the perspectives of player 1 and player 3. Figures
E.1 and E.2 show the move probabilities and the RPV from the perspective of players 1
and 3 respectively. The sequence of states P = (s0,s1,s2,s3) is highlighted.

MC(h) = {(s2,s3)}
M1(h) = {(s0,s1)}
M2(h) = {(s1,s2)}
M3(h) = {}

ME1(h) = 0.4

IC1(h) = −0.5

IP1,1(h) = 0.8

IP2,1(h) = 0.3

IP3,1(h) = 0

cha1(h) =
0.5

0.4+0.5+0.8+0.3+0
= 0.25

ME3(h) = 1.15

IC3(h) = −0.5

IP1,3(h) = 0.05

IP2,3(h) = 0.3

IP3,3(h) = 0

cha3(h) =
0.5

1.15+0.5+0.05+0.3+0
= 0.25
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Figure E.1: An exemplary match h. The path through the game tree is highlighted and
every node is marked with the RPV for the lineup L from the perspective of
player 1.
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Figure E.2: An exemplary match h. The path through the game tree is highlighted and
every node is marked with the RPV for the lineup L from the perspective of
player 3.
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F Exemplary Calculations of CHA for Game
Gexample

In Section 14.3.4 we have calculated the chanciness of game Gexample from the perspective
of player 2. We used the population Π = A1,A2,A3 with the agents defined in Section 12.2,
and probability 1 for the lineup L = (A1,A2,A3) (the same Ψ as in Section 14.3.4).

Here we repeat this calculation for the perspectives of player 1 and player 3. Figures F.1
and F.2 show the move probabilities and the RPV from the perspective of players 1 and 3
respectively.

32

2

1

-3

2-221-2 -2

0.8 0.2 0.5 0.5

0.8 0.2

0.25 0.750.0

-2
1.5

0

1.2

0.4

0.5 0.5

Figure F.1: The tree of Game Gexample reduced to the perspective of player 1 with move
probabilities for a specific lineup L. Each node s is annotated with the RPV
Ṽ1(s,L).
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Figure F.2: The tree of Game Gexample reduced to the perspective of player 3 with move
probabilities for a specific lineup L. Each node s is annotated with the RPV
Ṽ3(s,L).

E(|ME1(g)|) = 0.4

E(| IC1(g)|) = 0.25 ·0+0.75 ·0.8 ·0.5 = 0.3

E(| IP1,1(g)|) = 0.25 ·2.4+0.75 ·0.8 = 1.2

E(| IP2,1(g)|) = 0.25 ·0+0.75 ·0.8 ·0.3+0.75 ·0.2 ·1.2 = 0.36

E(| IP3,1(g)|) = 0.75 ·0.2 ·2 = 0.3

E(TI1(g)) = 0.4+0.3+1.2+0.36+0.3 = 2.56

CHA1(Gexample,Π,Ψ) =
E(| IC1(g)|)
E(TI1(g))

≈ 0.12

E(|ME3(g)|) = 1.15

E(| IC3(g)|) = 0.25 ·0+0.75 ·0.8 ·0.5 = 0.3

E(| IP1,3(g)|) = 0.25 ·0.15+0.75 ·0.05 = 0.075

E(| IP2,3(g)|) = 0.25 ·0+0.75 ·0.8 ·0.3+0.75 ·0.2 ·1.2 = 0.36

E(| IP3,3(g)|) = 0

E(TI3(g)) = 1.15+0.3+0.075+0.36+0 = 1.885

CHA3(Gexample,Π,Ψ) =
E(| IC3(g)|)
E(TI3(g))

≈ 0.16
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G Proof that cha1(g)≡ cha2(g)
for Two-Player Zero-Sum Games

For a match g of an n-player game G there will generally be n different values of chai(g)
for the different player perspectives i.

However, for the special case of two-player zero-sum we can show the following:

Lemma G.1 For any match g of the two-player zero-sum game G the chanciness of both
player perspectives is equal.

cha1(g)≡ cha2(g) (G.2)

Proof: Let g = (L,P) be a match of the two-player zero-sum game G. Because of the
zero-sum property, the equality Ṽ1(t,L) =− Ṽ2(t,L) holds for any terminal node t of G.

By the definition of Ṽi (Definition 13.1), the value of Ṽi(s,L) is a linear combination of
the values for the children of s. Therefore, the equality Ṽ1(s,L) =− Ṽ2(s,L) extends to all
nodes s of G.

Using this equality we get I(m,L,1) =− I(m,L,2) (Definition 13.3). Since the combined
influence of an SI is a sum of move influences (Definition 13.14), this equality extends to
the SI as well:

ME1(g) = −ME2(g) (G.3)

IC1(g) = − IC2(g) (G.4)

IP1,1(g) = − IP1,2(g) (G.5)

IP2,1(g) = − IP2,2(g) (G.6)

Since the definition of cha (Definition 14.2) uses the absolute influences of the SI, we
have the equality of cha1(g) and cha2(g) �

The above proof can easily be modified to show the invariance of cha and con under
certain “rule changes” applied to G. If the results for player i are all scaled with the factor
α, the influences of the SI on player i will scale accordingly. Since α then appears in the
numerator as well as the denominator of cha (or con), α is canceled out.

Since the equality of two random variables implies the equality of their expectations,
the following Lemma follows readily from the proof of Lemma G.1:
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Lemma G.7 For any two-player zero-sum game G, any population Π and any sampling
distribution Ψ, the chanciness of both player perspectives is equal.

CHA1(G,Π,Ψ)≡ CHA2(G,Π,Ψ) (G.8)
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H Estimation of the Approximation Error of
CHA and CON

The measures CHA is define as quotient of random variables X
Y .

To approximate the variance of the quotient of these non-independent random variables
we have used the formula by Blumenfeld [Blu 2001, 2.29]:

Var
(

X
Y

)
≈
(

E(X)
E(Y )

)2( Var(X)
(E(X))2 +

Var(Y )
(E(Y ))2 −

2Cov(X ,Y )
E(X)E(Y )

)
(H.1)

Since in our case the random variables X and Y are themselves obtained as the sample
mean of other random variables, we have used the sample mean, the sample variance of
the mean, and the sample covariance of both means in place of the operators E,Var and
Cov.

We have then used the root of this approximation of an approximation as our error
estimate.
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I Result Statistics for “EinStein würfelt
nicht Tetra”

In Section 20.5 we described the game “EinStein würfelt nicht Tetra” (EWNT) and gave
approximated measurements for chanciness and controllability. For whom it may concern,
we present additional result statistics from our simulation matches.

result \ player 1 2 3 4

+1 1161 1097 968 869
−1 863 768 715 636

0 2071 2230 2412 2590

Figure I.1: Absolute frequencey of the different payoff values for each player role. Each
possible lineup from the population Π = {RND,MC1,MC8,MC64} was sampled
16 times.

result \ player 1 2 3 4

+1 147 122 121 122
−1 105 101 88 57

0 260 289 303 333

Figure I.2: Absolute frequencey of the different payoff values for each player role. Each
possible lineup from the population Π = {MC1,MC512} was sampled 32 times.
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I Result Statistics for “EinStein würfelt nicht Tetra”

Lineup ME1 ME2 ME3 ME4

(MC1 MC1 MC1 MC1 ) 0.06 0.05 0.04 0.04
(MC1 MC1 MC1 MC512) -0.07 -0.06 -0.06 0.39
(MC1 MC1 MC512 MC1 ) -0.06 -0.06 0.40 -0.04
(MC1 MC1 MC512 MC512) -0.16 -0.13 0.28 0.26
(MC1 MC512 MC1 MC1 ) -0.07 0.43 -0.05 -0.05
(MC1 MC512 MC1 MC512) -0.16 0.28 -0.11 0.26
(MC1 MC512 MC512 MC1 ) -0.14 0.29 0.25 -0.09
(MC1 MC512 MC512 MC512) -0.21 0.19 0.18 0.17
(MC512 MC1 MC1 MC1 ) 0.45 -0.05 -0.05 -0.04
(MC512 MC1 MC1 MC512) 0.29 -0.12 -0.11 0.26
(MC512 MC1 MC512 MC1 ) 0.29 -0.12 0.26 -0.08
(MC512 MC1 MC512 MC512) 0.17 -0.18 0.18 0.19
(MC512 MC512 MC1 MC1 ) 0.30 0.26 -0.10 -0.09
(MC512 MC512 MC1 MC512) 0.19 0.17 -0.15 0.18
(MC512 MC512 MC512 MC1 ) 0.18 0.19 0.17 -0.12
(MC512 MC512 MC512 MC512) 0.09 0.11 0.11 0.12

Figure I.3: match expectation for various lineups in the game EWNT (estimated error ≈
0.01).
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