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Abstract

Monte-Carlo Tree Search (MCTS) is a class of simulation-based search algorithms.
It brought about great success in the past few years regarding the evaluation of
deterministic two-player games such as the Asian board game Go. A breakthrough
was achieved in 2006, when Rémi Coulom placed 1st at the ICGA Computer Go
Olympiad in Turin with his MCTS based Go programm CrazyStone in the 9× 9
devision. Until today, MCTS highly dominates over traditional methods such as
αβ search in the field of Computer Go.

Over the years, MCTS found applications in several search domains. A recent
survey of MCTS methods lists almost 250 MCTS related publications originating
only from the last seven years, which demonstrates the popularity and importance
of MCTS. It is currently emerging as a powerful tree search algorithm yielding
promising results in many search domains such as connection games Hex and
Havannah, combinatorial games Breakthrough and Amazons as well as General
Game Playing and real-time games. Apart from games, MCTS finds applica-
tions in combinatorial optimization, constraint satisfaction, scheduling problems,
sample-based planning and procedural content generation.

In this thesis, we present a parallelization of the most popular MCTS variant for
large HPC compute clusters that efficiently shares a single game tree representa-
tion in a distributed memory environment and scales up to 128 compute nodes
and 2048 cores. It is hereby one of the most powerful MCTS parallelizations to
date. We empirically confirmed its performance with extensive experiments and
showed our parallelization’s power in numerous competitions with solutions of
other research teams around the world.

In order to measure the impact of our parallelization on the search quality and
remain comparable to the most advanced MCTS implementations to date, we
implemented it in a state-of-the-art Go engine Gomorra, making it competitive
with the strongest Go programs in the world.
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Apart from the parallelization, we present an empirical comparison of different
Bayesian ranking systems when being used for predicting expert moves for the
game of Go. The ranking systems are based on the training of parametrized prob-
ability models. Those models make use of shape patterns and tactical feature
patterns to abstract pairs of a position and a move that can be played in that
position. Adapting the parameters of such prediction systems during an ongo-
ing MCTS search is considered a promising direction for further search quality
improvement.

We investigated the automated detection and analysis of evaluation uncertainties
that show up during MCTS searches. This was done with the objective to de-
velop triggering mechanisms for guiding the aforementioned adaptation of move
prediction systems. As the result, we obtained a promising system that is capable
of detecting ongoing local fights in Go positions in the course of an MCTS search
that even allows for approximately locating involved regions on the Go board.
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Zusammenfassung

Monte-Carlo Tree Search (MCTS) beschreibt eine Klasse von simulationsbasierten
Baumsuchalgorithmen. In den vergangenen Jahren wurden mit ihr enorme Fort-
schritte in der Bewertung von Zweipersonenspielen wie dem asiatischen Brettspiel
Go erzielt. Ein Durchbruch wurde im Jahr 2006 erzielt, in dem Rémi Coulom mit
seinem MCTS basierten Go Programm CrazyStone im 9× 9 Go den Sieg bei der
ICGA Computer Go Olympiade in Turin erringen konnte. Bis heute dominieren
MCTS Algorithmen die Entwicklung im Computer Go deutlich vor traditionellen
Methoden wie der αβ Suche.

Über die Jahre haben MCTS Algorithmen Anwendung in diversen Suchdomänen
gefunden. Eine kürzlich veröffentlichte Studie führt über 250 Publikationen auf,
die in den vergangenen sieben Jahren im Bereich MCTS veröffentlicht wurden und
demonstriert damit die aktuelle Popularität und Relevanz des Verfahrens. MCTS
präsentiert sich zunehmend als Klasse leistungsstarker Baumsuchalgorithmen die
zu beachtlichen Ergebnissen in vielen Suchdomänen führen. Zu diesen Domänen
zählen Spiele wie Hex und Havannah, die kombinatorischen Spiele Breakthrough
und Amazons wie auch das General Game Playing und Echtzeit Spiele. Neben
Spielen findet MCTS Anwendung in kombinatorischer Optimierung, Erfüllbar-
keitsproblemen, Scheduling Problemen, samplebasierter Planung und prozeduraler
Generierung.

In dieser Arbeit stellen wir für die derzeit populärste MCTS Variante eine Paral-
lelisierung für große HPC Cluster vor. Unsere Parallelisierung hält eine einzelne
Suchbaumrepräsentation in verteiltem Speicher vor und skaliert für bis zu 128
Rechenknoten und 2048 Cores. Heute ist sie damit eine der leistungsstärksten
MCTS Parallelisierungen. Wir haben die Leistungsfähigkeit unserer Parallelisie-
rung mit umfangreichen Experimenten empirisch belegt. Zusätzliche empirische
Vergleiche mit Lösungen anderer Forschergruppen bestätigen die Qualität unseres
Verfahrens.

Um die Auswirkungen unserer Parallelisierung auf die Qualität der Suche bestim-
men zu können, haben wir diese für unser state-of-the-art Go Programm Gomorra
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implementiert. Dies erlaubt einen Vergleich mit den aktuell fortgeschrittensten
MCTS Implementierungen anderer Forschergruppen. So konnten wir in inter-
nationalen Wettbewerben zeigen, dass sich unser paralleles Go Programm auf
Augenhöhe mit den weltweit stärksten Programmen Anderer befindet.

Neben unserer Parallelisierung präsentieren wir einen empirischen Vergleich ver-
schiedener Bayesianischer Zugvorhersagesysteme bei ihrer Anwendung im Com-
puter Go. Diese Systeme basieren auf dem automatisierten Training von parame-
trisierten Wahrscheinlichkeitsmodellen. Die Modelle nutzen Muster aus Stein-
formationen und taktischen Eigenschaften um Paare von Spielpositionen und
verfügbaren Spielzügen zu abstrahieren. Die Anpassung der Parameter solcher
Vorhersagesysteme während einer MCTS Suche wird gemeinhin als vielversprech-
ende Forschungsrichtung angesehen.

Wir haben zudem die automatisierte Erkennung und Analyse von Bewertungsun-
sicherheiten, die während MCTS Suchen auftreten untersucht. Die Zielsetzung
war die Entwicklung von Mechanismen zur gezielten Steuerung der vorgenannten
Parameteranpassung von Vorhersagesystemen zur Laufzeit. Das Ergebnis ist ein
vielversprechendes Verfahren, das erlaubt, andauernde lokale Kämpfe in Go Posi-
tionen zu erkennen und auf dem Spielbrett zu lokalisieren.

viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5
2.1 The Game of Go . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Rules and Terms . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Game Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Traditional Game Tree Search Algorithms . . . . . . . . . 14

2.3 Computer Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Computer Go as Fertile Ground for Monte Carlo Tree Search 17

3 Monte-Carlo Tree Search 19
3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Basic Algorithmic Framework . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Bandit Based In-Tree Policy πUCT . . . . . . . . . . . . . . 23
3.2.2 First Play Policy . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Handling of Transpositions . . . . . . . . . . . . . . . . . . 27

3.3 Enhancements to Basic MCTS . . . . . . . . . . . . . . . . . . . . 28
3.3.1 RAVE: Rapid Action Value Estimate . . . . . . . . . . . . 28
3.3.2 PB: Progressive Bias . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 PW: Progressive Widening . . . . . . . . . . . . . . . . . . 31

3.4 Playout Policies πp . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Random Policies . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Handcrafted Policies . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 Machine Learning Based Policy Design . . . . . . . . . . . 33

ix



Contents

4 Parallel Monte-Carlo Tree Search 35
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Parallelization for Shared and Distributed Memory . . . . 37
4.1.2 Parallelization for Accelerator Hardware . . . . . . . . . . 40
4.1.3 General Techniques for Scalability Improvements . . . . . 41

4.2 Proposed Parallelization: Distributed-Tree-Parallelization . . . . . 42
4.2.1 Distributed Simulations . . . . . . . . . . . . . . . . . . . 43
4.2.2 Tree Node Duplication and Synchronization . . . . . . . . 44
4.2.3 Distributed Transposition Table . . . . . . . . . . . . . . . 46
4.2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . 49
4.2.5 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.6 Broadcast Nodes . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Performance and Scalability . . . . . . . . . . . . . . . . . 57
4.3.3 Overhead Distributions . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Effect of Parameters . . . . . . . . . . . . . . . . . . . . . 71
4.3.5 Discussion of the Comparison of MCTS Parallelizations . . 73

4.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Move Prediction in Computer Go 77
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Probability Models for Paired Comparison . . . . . . . . . 79
5.1.3 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.4 State-Action Abstraction with Patterns in Computer Go . 81

5.2 Bayesian Move Prediction Systems . . . . . . . . . . . . . . . . . 83
5.2.1 Minorization-Maximization . . . . . . . . . . . . . . . . . . 85
5.2.2 Bayesian Ranking Model . . . . . . . . . . . . . . . . . . . 86
5.2.3 Bayesian Approximation Ranking . . . . . . . . . . . . . . 88
5.2.4 Probabilistic Ranking . . . . . . . . . . . . . . . . . . . . . 89

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 MCTS Driven Position Analysis 99
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . 100
6.3 MC-Criticality Based Semeai Detection . . . . . . . . . . . . . . . 104

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



Contents

6.3.3 Player-wise, Intersection-wise and Cluster-wise MC-Criticality109
6.3.4 Detecting and Identifying Local Fights . . . . . . . . . . . 112
6.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Summary and Outlook 119
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Conclusions and Lessons Learned . . . . . . . . . . . . . . . . . . 120
7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

xi





List of Figures

2.1 Empty Goban. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Terms of the game of Go (part 1) . . . . . . . . . . . . . . . . . . 7
2.3 Terms of the game of Go (part 2) . . . . . . . . . . . . . . . . . . 7
2.4 Scoring example on a 7× 7 Go position . . . . . . . . . . . . . . . 8
2.5 Basic Ko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Example game tree for 4× 4 Go. . . . . . . . . . . . . . . . . . . 13

3.1 Building blocks of MCTS. . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Overview of MCTS parallelization methods. . . . . . . . . . . . . 38
4.2 Finite state machine for distributed simulations. . . . . . . . . . . 43
4.3 Setup of an MPI rank on a CPU. . . . . . . . . . . . . . . . . . . 49
4.4 An illustration of our Distributed-Tree-Parallelization. . . . . . . . 52
4.5 Example 3-hop broadcast operation . . . . . . . . . . . . . . . . . 55
4.6 Gomorra single node selfplay . . . . . . . . . . . . . . . . . . . . . 58
4.7 Gomorra Distributed-Tree-Parallelization selfplay . . . . . . . . . 59
4.8 Distributed-Tree-Parallelization simulation rate scalability . . . . 60
4.9 Distributed-Tree-Parallelization average workloads . . . . . . . . . 61
4.10 Distributed-Tree-Parallelization bandwidth usage search ranks . . 62
4.11 Distributed-Tree-Parallelization bandwidth usage broadcast ranks 63
4.12 Time requirement of MPI Testsome . . . . . . . . . . . . . . . . . 64
4.13 Gomorra scalability against FUEGO . . . . . . . . . . . . . . . . 65
4.14 Gomorra scalability against Pachi . . . . . . . . . . . . . . . . . . 66
4.15 Distributed-Tree-Parallelization impact of overload parameter . . 67
4.16 Selfplay strength scalability of Root-Parallelization . . . . . . . . 67
4.17 Root-Parallelization vs. Distributed-Tree-Parallelization . . . . . . 68
4.18 Distribution of computation time overheads in sequential version . 69
4.19 Distribution of computation time overheads in distributed version 70
4.20 Distribution of work package occurrence in distributed version . . 72
4.21 Work package processing time in distributed version . . . . . . . . 72
4.22 Effect of parameter Ndup. . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



List of Figures

4.23 Effect of parameters Nmin
sync and Nmax

sync = 2Nmin
sync. . . . . . . . . . . . 74

5.1 Shape-Pattern templates of sizes 1 to 14. . . . . . . . . . . . . . . 82
5.2 Minorization-Maximization . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Factor graph of Bayesian Full Ranking Model. . . . . . . . . . . . 88
5.4 Occurence of shapes of varying sizes in different game phases . . . 92
5.5 Probability of assigning good ranks to expert moves . . . . . . . . 93
5.6 Comparison of prediction rank distributions. . . . . . . . . . . . . 94
5.7 Ranking errors at different stages of the game . . . . . . . . . . . 94
5.8 Time needed per game on different training set sizes . . . . . . . . 95
5.9 Pattern size related prediction rates . . . . . . . . . . . . . . . . . 96
5.10 Integration of tiny feature vectors into shape patterns . . . . . . . 96
5.11 Move prediction accuracy in different game phases . . . . . . . . . 97

6.1 Normalized histogram of scores on empty 9× 9 Go board . . . . . 101
6.2 Go position with two semeai. . . . . . . . . . . . . . . . . . . . . 102
6.3 Histogram of scores on 9× 9 Go position with two semeai . . . . . 103
6.4 The triweight kernel K(x) . . . . . . . . . . . . . . . . . . . . . . 105

6.5 K
(
x−s
h

)
as used in f̂(y) . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 KDE estimated density function using the triweight Kernel . . . . 107
6.7 First 5 iterations of the mean-shift operation . . . . . . . . . . . . 108
6.8 Score clusters derived from means ms . . . . . . . . . . . . . . . . 109
6.9 Observing random variables at terminal positions. . . . . . . . . . 111
6.10 Player-wise criticality reveal the critical intersections . . . . . . . 115
6.11 Player-wise criticality for another 4 test cases . . . . . . . . . . . 116
6.12 Analysis of a 13x13 position from a game of Pachi vs. Ketelaars . 117

xiv



CHAPTER 1

Introduction

1.1 Motivation

The game of Go is said to fascinate people for more than 4000 years. The old-
est known written recording in history dates back to the year 625 B.C. [10] and
today, the total number of active Go players is estimated to be between 25 and
50 million worldwide. In 1710, Gottfried Wilhelm Leibniz mentioned the game
with the following words: “The multitude of pebbles & size of the gameboard
makes, as I should believe easily, this game to have greatest cleverness and diffi-
culty[...]” [63] (original source in latin). Indeed, only recently (in relation to the
before mentioned dates), Lichtenstein and Sipser showed the PSPACE hardness
of the generalized game of Go for arbitrary board sizes from todays computational
comlexity theory’s perspective [65]. It is hereby not surprising, that until today,
no computer program exists that is able to compete with the current strongest
human Go players. And this holds true, although research in Computer Go is
carried out for decades already. At the latest in 1985, with the proclamation of
the Ing-Prize, a 40.000.000 NT dollar1 prize sponsored by Ing Chang-ki for the
first program to beat a professional Go player in four out of seven even games,
Computer Go became a popular subject for research. It was often cited as a grand
challenge for artificial intelligence.

In 2006, the rise of Monte Carlo Tree Search (MCTS), a simulation based search
method, revolutionized the development of Computer Go programs. Within only
seven years, Go programs got to the strength of strong amateur players, reduc-
ing the gap to the strongest human professional Go players significantly. Besides

140.000.000 New Taiwan dollar had a worth of about 1.000.000 USD at that time

1



1 Introduction

constantly improving techniques for learning and predicting expert play and the
continuous development of MCTS enhancements, an almost safe source for further
strength improvement is the sole increment of the number of simulations that are
computed per move decision. But MCTS also requires us to keep a search tree
representation in memory. Hence, an increased number of simulations also de-
mands for more memory to store an ever growing search tree representation. This
motivates the use of large compute clusters, that not only provide large amounts
of computation cores that are needed to increase the number of simulations com-
putable per time unit, but at the same time, provide a huge amount of memory
capable of storing large search tree representations. Consequently, a central part
of this thesis copes with the parallelization of MCTS for large compute clusters.

Although a lot of strength improvement comes from the mere increment of the
number of simulations computable per time unit, there remain situations where
MCTS in its most basic form appears inappropriate. For example so called cap-
turing races, that require deep lines of correct play. While a basic MCTS searcher
needs to rediscover those lines in different subtrees of the overall search tree, hu-
mans are more capable to exploit the locality of such problems and succeed to
break down whole positions into smaller subgames where appropriate. Humans
thereby manage to share information between different subtrees of the overall
search tree. We expect an enormous improvement of search quality by a success-
ful extension of MCTS with comparable capabilities.

1.2 Contributions of This Thesis

The main contribution of this thesis is the development of a new technique for
scalable parallel Monte-Carlo Tree Search on high performance computing systems
(HPC). Our parallelization’s unique feature is a single large game tree represen-
tation, distributed among the local memories of distinct compute cluster nodes.
We furthermore contribute to the long term objective of dynamically adapting
simulation policies based on generalizing and sharing obtained information be-
tween different subtrees of a single large game tree. More detailed, we made the
following contributions to the research field of Monte-Carlo Tree Search:

• We developed a novel technique for distributed Monte Carlo Tree Search
based on a data driven approach, that we called Distributed-Tree-Paralleli-
zation. For this purpose, we implemented a highly efficient distributed hash
table, that is able to store a large game tree, distributed on the memories of
distinct compute nodes. Our parallelization hereby excels in regard of the
realizable size of the search tree representation in memory and consequently
allows for better exploitation of obtained simulation results, directly leading
to a more informed search. A data driven approach here denotes that the

2



1.2 Contributions of This Thesis

distribution of computational tasks is based on the location of the data the
computations depend on. Hence, by prescribing the distribution of the game
tree data structure among the single compute nodes’ local memories, we im-
plicitly determine a policy for assigning computational tasks, that depend on
the game tree data, to particular compute nodes of a cluster. We concentrate
on compute clusters that are made of homogeneous compute nodes, each be-
ing equipped with potentially more than one many-core CPU. We assume a
modern low latency interconnect of the compute nodes, e.g., an Infiniband
network. With an implementation of Distributed-Tree-Parallelization in our
Go playing program Gomorra, we empirically showed its scaling to more
than 2000 compute cores in the best setting.

• We developed the before mentioned MCTS based Go program Gomorra and
parallelized it for shared memory machines, as well as for large HPC compute
cluster systems. By integrating a large number of modern heuristics and
techniques, we made it comparable to the current strongest Go programs
in the world. This strengthens our firm conviction that our findings and
improvements are relevant and for most parts also applicable to other state-
of-the-art MCTS searchers. We proved the strength of Gomorra in several
international computer Go tournaments, most recently in 2013 by winning
a silver medal at the 13th Computer Olympiad in Yokohama, Japan.

• One of the central sources for search quality improvement, not only for
MCTS, is the development of high quality move prediction systems. Due
to their relevance, a number of move prediction systems were developed
and investigated for computer Go. For the first time, we compared several
bayesian move prediction systems under fair and equal conditions to reveal
their efficiency when being faced with identical data records. We showed
that, given equal environments, most of the prediction systems under review
perform almost identical. Some of those systems however, are filtering algo-
rithms, i.e., they can learn from data streams. Thereby, they appear ideal for
being used to train or adapt prediction models during actual MCTS search
runs, by processing simulation results as they occur.

• We believe that, one of the most promising future directions for further
search quality improvement in MCTS, will be the dynamical adaptation of
playout policies based on the outcome of former simulations. While MCTS
shows great performance in a wide range of Go positions, there remain certain
situations where MCTS fails. For example lengthy capturing races, especially
when they show up simultaneously in a multitude. We developed a method
that continuously analyses histograms of simulation outcomes to discover
capturing races and further difficult situations that require special attention
during MCTS search runs. Furthermore, once the histogram analysis signals
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a difficult to handle situation, we provide a method to heuristically localize
regions on the Go board that are responsible for the observed singularities.
For the future, this might allow a special treatment of those regions with the
aim to more correctly estimate the game positions’ values and thereby might
lead to substantial search quality improvements.

1.3 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 gives a brief introduction to the game of Go, game tree search and the
history of Computer Go.

Chapter 3 gives a detailed explanation of the general Monte Carlo Tree Search
framework and presents a number of extensions and variants developed
throughout the past seven years.

Chapter 4 is devoted to the central contribution of this thesis and presents our
proposal for parallelizing MCTS on hybrid shared and distributed memory
systems. It furthermore summarizes related work on MCTS and attempts
on its parallelization.

Chapter 5 presents an empiric comparison of several Bayesian prediction systems
when being used as move predictors for the game of Go.

Chapter 6 is dedicated to the presentation of a method for automated analysis of
score histograms obtained from MCTS simulations. We present a method for
heuristically detecting and localizing evaluation uncertainties during MCTS
searches.

Chapter 7 summarizes and concludes the work presented in this thesis. It fur-
thermore lists a number of promising future directions.

4



CHAPTER 2

Background and Related Work

2.1 The Game of Go

One of the interesting properties of the game of Go, despite its age and history,
is the small set of rules and the rules’ simplicity. Nevertheless, deciding for the
best move in an arbitrary Go position turns out to be a highly complex task.
These properties made Go become a popular subject to a number of mathemat-
ical investigations, some of them dating back to the 11th century. This section
introduces the basic rules of the game and briefly summarizes investigations on
the complexity of the game. Due to the long history of the game of Go, a num-
ber of slightly different rule sets evolved. Two of the most popular are known as
the Japanese and Chinese rules. Throughout this thesis, we use solely a variant
of the Chinese rules and therefore we stick to a description of the basic Chinese
rules only. For a more detailed discussion on the various Go rule sets and their
differences, we refer the interested reader to the British Go Association’s website:
http://www.britgo.org/rules/compare.

2.1.1 Rules and Terms

The game of Go is a two-player, zero-sum game. The zero-sum property here says,
that an advantage for one player is to the exactly same amount a disadvantage
for the other player. Go is played on a game board called Goban. It consists
of 19 horizontal and 19 vertical lines, that intersect in 361 points. Figure 2.1
shows an empty Goban, that constitutes also the starting position of each game.
Nine intersections are highlighted by little dots that are called hoshi. They are
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2 Background and Related Work

mainly intended to assist humans’ orientation. Both players are given a number
of stones. One player has solely black stones, while all stones of the other player
are white. Accordingly, we distinguish between the black player and the white
player. We simply call them Black and White in the remainder. Both players
alternate in placing a single stone of their color on one of the not yet occupied 361
intersections. Black always plays the first stone in a game. We call horizontally
and vertically neighboring stones of equal color groups. A group might also consist
of a single stone. Figure 2.2a shows an example position containing eight groups
of stones that are accordingly numbered. Stones with equal numbers belong to
the same group.
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�������������������
�������������������
�������������������
������������������	

Figure 2.1: The empty Goban

Liberties and Capturing

Once a stone is placed on the board, it is never moved again. The only exception to
this rule is for stones that get captured. We call horizontally or vertically adjacent
empty crossings of groups liberties. In case the number of liberties of a group
gets reduced to zero, the group is said to be captured and all stones belonging
to it, are removed from the board. In the position depicted in Figure 2.2b, three
intersections are labeled with letters. They mark last liberties of groups. Note
that a is the last liberty of two different groups, i.e., group 1 and 3, at the same
time. Hence, placing a white stone at a, as shown in Figure 2.2c, reduces the
number of liberties of groups 1 and 3 to zero, leading to a capture of both groups.
All stones of the captured groups are then removed from the board and become
prisoners of the white player. Figure 2.2d shows the resulting position.
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Figure 2.2: Terms of the game of Go (part 1)

Suicide, Eyes and Unconditional Life

Following the rules described so far, it appears possible to place a stone on the
board that immediately stays without liberties, and hence would become a prisoner
of the opponent. An example is shown in Figure 2.3a, where the white stone
marked with a triangle was played last. Such moves are called suicide moves and
are generally forbidden1. As can be seen in Figure 2.3b, the move discussed before
is valid, if Black plays in its other liberty first. In this case, again, the white stone
seems to stay without liberties when being placed on the board, but this is also
true for the adjacent black group. The captured stones of the opponent, in this
case the black group, are removed first. Hence, a single white stone with three
liberties will validly remain on the board.

With the observations made before, one can infer another important property of
the black groups in the position depicted in Figure 2.3c. There is no way for White
to play on any of Black’s liberties labeled with the letter a, if Black will not do
so before. Hence, Black’s group can not be captured by White. We call Black’s
group unconditionally alive and a liberty like a, that is completely surrounded by
stones of the same color, eye. An eye does not need to be a single crossing, but
might be a number of adjacent empty crossings. One can show that the essential
requirement for a group of stones to be unconditionally alive is its containment of
at least two eyes.
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(c) Two Eyes.

Figure 2.3: Terms of the game of Go (part 2)

1Actually some rule sets, like the New Zealand rules, allow suicide moves.
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Game Ending, Scoring and Seki

Besides placing a stone on the board, a player always has the option to pass, i.e.,
to hand over the right of placing a stone to the opponent without placing a stone
himself. The game ends when both players pass in a row2. Thereafter, dead stones
are removed from the board. Stones are considered dead when they are not able
to form living groups or connect to such. If players do not agree on the life-dead
status of groups, they might resume play to clarify the situation. Figure 2.4a
shows an example 7× 7 Go position with a single dead black stone, marked with
a square. Hence, after removal of all dead stones, the position in Figure 2.4b
remains for scoring.

The board can now be divided into black and white areas. A field is considered
black area if it is occupied by a black stone, or if it is part of a group of empty
fields that is adjacent solely to black stones or an edge of the board. The white
area is determined accordingly. The set of intersections that are part of a players
area but not occupied by a players stone (i.e., they are empty) is also called the
player’s territory. Figure 2.4c shows an example of a terminal game position.
Fields that correspond to Black’s area are labeled with the letter b, White’s area
is marked with w. Simple colorwise counting of the number of stones and empty
area intersections yield the scores of each player. In the example position, we have
20 + 3 = 23 points for Black and 20 + 4 = 24 points for White. Hence, from the
sole interpretation of the board configuration, White wins by one point.
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(a) Position after

passing out.
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(d) Life in Seki.

Figure 2.4: Scoring example on a 7× 7 Go position

But Figure 2.4c also shows two points that are marked with an s, indicating that
those points are neither white nor black area. Looking at the adjacent groups
marked with a triangle in Figure 2.4d, one might argue that at least some of those
stones should be considered as dead, as definitely, not all of them are able to form
two eyes or connect to other living groups. Whichever player first places a stone
on one of the intersections labeled with the letter s thereby reduces the number

2It is also possible that one of the players resigns, accepting the other player as the winner. This is also a
common way of finishing a game, especially between strong players that are able to predict a game’s outcome
at an early stage. Resigning early in a clearly decided game is also considered as a matter of politeness.
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2.1 The Game of Go

of liberties of its own groups to one and will be captured by the opponent during
the next turn. Accordingly, none of the player wants to play on s. The involved
groups are denoted as alive in seki and remain on the board.

Ko rules

Figure 2.5 shows a simple, two moves lasting sequence that leads to a position
repetition. By placing a stone on the intersection labeled with the letter a in Fig-
ure 2.5a, White can capture a single black stone, leading to the position depicted
in Figure 2.5b. Now Black can capture the newly placed white stone, creating the
position shown in Figure 2.5c that equals the initial position.
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Figure 2.5: Basic Ko.

Hence, given the rules as explained so far, repetitions of positions, and thereby
never ending games are possible. The so-called ko rules target at prohibiting those
position repetitions. While a number of ko rules do exist and are regularly subject
of lengthy discussions, we will present and discuss only the so-called positional
super ko (PSK) rule, that is the only ko rule used throughout this thesis. PSK
simply forbids the repetition of complete board configurations, regardless of which
player is to move3. The pass rule obviously takes a special role, otherwise passing
would not be allowed, because the board configuration remains the same. Hence,
what was said before remains true: for either player, passing is always a valid
option.

Semeai

In many respects, Go is a game about counting. This is especially true in the
manner of counting liberties, when two or more adjacent groups take part in a
so-called capturing race. Two groups take part in a capturing race if they both
need to capture the respective opponent group in order to create two eyes. The
difference in the number of liberties is often critical for the outcome of such races.
The Japanese term for capturing race is semeai. Semeai play an important role
in Computer Go and are discussed in more detail in Chapter 6.

3A corresponding, player sensitive super ko rule is called situational super ko.
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Player Ranking, Handicapping and Komi

Go players are traditionally ranked with a system of kyu and dan ranks. Hereby,
the kyu ranks are considered as student ranks that are counted downwards with
increasing strength, ranging from 30 kyu for the very beginner to 1 kyu for the
strongest students. The dan ranks are devoted to masters and are counted up-
wards, starting with the 1st and ending with the 7th dan. Additional ranks,
typically called professional dan are reserved for professional Go players. They
are awarded by the professional Go associations of some Asian countries, currently
Japan, China, Korea and Taiwan. The ranks range from 1 to 9 professional dan,
where players holding a professional dan are generally expected to be stronger than
amateur players. Hence, a holder of the 1st professional dan might be stronger
than the holder of a 7th amateur dan. A difference of one amateur rank, either
kyu or dan, is expected to be of the value of one move. That is, a game between
a 6th and 3rd kyu can be expected to be even, when the 6 kyu player is allowed
to make the first three moves in the game before the stronger 3 kyu player joins
the game. The practice of giving the weaker player the right of placing a number
of stones according to the ranking difference to his opponent before the actual
game starts is called handicapping. Another way of even out unequal games is the
concept of komi. Komi is a certain number of points awarded to the white player
even before the game starts, to compensate for the advantage of the black player
for moving first. An adequate komi depends on the rank difference of the players
and the size of the Go board. Typical komi values for the 19 × 19 board and
equally ranked players are 6.5 and 7.5. Choosing the komi non-integral prevents
the occurrence of draws. The correct komi4 for 9× 9 Go is currently assumed to
be 7.0.

Relative Elo Rating

Another popular system for rating players is the Elo system. It is named after
its inventor Arpad Elo [34] and was originally developed for the rating of chess
players. A player’s rating is given in form of a single rating number representing
the player’s skill. The Elo system is based on the simplifying assumption that
each player’s performance can be modeled with a normally distributed random
variable of equal standard deviation. The mean of this distribution is taken as
the player’s skill, or Elo rating. In the remainder of the thesis, we use the relative
Elo measure, when presenting results of empirical experiments with different Go
engines. Given two players, or Go playing programs, A and B, with corresponding
absolute Elo ratings RA and RB, respectively, we obtain the relative Elo of A over
B by EloRel(A,B) := RA−RB. Given EloRel(A,B) we can estimate the probability

4The correct komi targets on exact compensation of Black’s advantage of playing first assuming optimal play
by both players.
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2.1 The Game of Go

PA,B of A to win a game when competing with B, based on the definition of the
Elo rating system, by

PA,B :=
1

1 + 10−EloRel(A,B)/400
.

Accordingly, given the probability of PA,B of A to win a game, when competing
with B as an observation of a number of games between A and B, we can infer
the corresponding relative Elo rating by

EloRel(A,B) := 400 log10

(
1

(1− PA,B)
− 1

)
.

Table 2.1 shows some example mappings of relative Elo points to the corresponding
probabilities of winning future games.

Table 2.1: Mapping of relative Elo points to probabilities of winning.

EloRel(A,B) PA,B

0 0.5
10 0.5144
50 0.5715

100 0.6401
200 0.7597
300 0.8490
400 0.9091
500 0.9468
600 0.9693

2.1.2 Complexity

Given an arbitrary n×n Go position, the computational complexity of determining
the winner assuming optimal play, is polynomial space hard (PSPACE-hard). This
was shown in 1980 by Lichtenstein and Sipser [65], by reducing the canonical
PSPACE-complete problem TQBF to the game generalized geography, then to a
planar version of generalized geography and finally to the game of Go. It is thereby
shown that the game of Go, generalized in respect to the board size, is at least as
difficult as the most difficult problems in the complexity class PSPACE. It would
be considered as PSPACE complete, if the length of the game could be bounded
polynomially in the number of intersections of the board. In 1983, Robson [82]
showed that Go is EXPTIME-complete for certain ko rules.

Considering computational complexity only, due to its constant problem size,
19 × 19 Go is decidable in polynomial time. Using a large lookup table that
contains the optimal move to each position would bound the computation time
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to O(1). Hence, for discussing the complexity of a practical board size of 19× 19,
we are also interested in the value of the constants that describe the problem,
like the number of legal positions the game might enter, i.e., the state-space com-
plexity, the number of possible games and further parameters of the game tree
like its average branching factor. In 2007, Tromp and Farnebäck [100] published
their results about investigations on the numbers of legal positions for varying
board sizes. They computed the exact numbers for board sizes of up to 17x17
and approximated the number of legal 19× 19 Go positions to be pretty exactly
2.08168199382 · 10170. Here, legal does not necessarily mean that all positions can
occur during a valid game, but only that all groups of stones on the board have
at least one liberty. Tromp and Farnebäck also state, a lower and upper bound
on the number of possible 19× 19 Go games to be 101048

and 1010171
respectively.

The typical length of a 19 × 19 Go game between strong players is between 150
and 250 moves with an average number of choices of about 200 to 250. But
the vast amount of legal positions and games and the high number of choices a
player has for each move alone doesn’t necessarily make the game particularly
complex. It might still be the case that a relatively easy policy exists that leads
to optimal play. However, no such policy is known and after decades of research
that was carried out on computer Go, no solution was found to estimate the value
of arbitrary Go positions good enough to safely reduce the search space. This
additional fact makes the search for the best move to arbitrary Go positions an
highly challenging task. The proven PSPACE-hardness of generalized Go makes
it unlikely that a strong and computationally efficient static evaluation function
for arbitrary Go positions will be discovered in the future.

2.2 Game Tree Search

The objective of our research on a Go playing program is the computation of the
best possible move to any arbitrary Go position. Given this objective, we have
to define how the best move is characterized. Thereafter, in this section, we will
discuss how its computation can be realized.

Given an arbitrary Go position and a player to move, there typically exist a number
of possible choices for the next move. Whichever move the player chooses, there
will be a resulting new position. Writing down both these positions, connecting
them with an arrow representing the move and doing so recursively for all moves
and resulting positions, we end up with a drawing like the one shown in Figure 2.6.
In the Figure, a little dot on the stones indicates the stone that was placed last.
This procedure of writing down all possible continuations of the game, starting
with the position on the top, leads us to the idea of the so-called game tree.
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Figure 2.6: Example game tree for 4× 4 Go.

2.2.1 Terminology

We will now introduce a number of formalisms that lead us to a formal description
of a game tree. This gives us the background to define the best move and allows
for discussing its computation.

Definition 1 (Directed Acyclic Graph (DAG)) A directed graph G := (V,E)
is a 2-tuple of a set of nodes V and a set of directed edges E ⊆ (V × V ), each
connecting two nodes. We call a sequence of nodes P := (v1, v2, . . . , vn) with n > 1
a path in G, iff (vi, vi+1) ∈ E for all 1 ≤ i < n. P is called a cycle, iff v1 = vn.
We call a graph a directed acyclic graph (DAG) iff it contains no cycles.

Definition 2 (Tree) We call a graph G := (V,E) tree, if it is a DAG and if
there is exactly one node v0 with no incoming edge, i.e., (vj, v0) /∈ E for all j. All
other nodes vi have a single incoming edge, i.e., there exists exactly one j with
(vj, vi) ∈ E. We call v0 the root of the tree. We call the set L := {vl|∀j(vl, vj) /∈ E}
of nodes with no outgoing edges the set of leaves of the tree.

Definition 3 (Game Tree) We define a game tree G := (V,E, r) as a tree with
an additional leaf value function r : L → Z. Nodes then represent positions of a
game and edges the corresponding moves that lead from one position to the next.
Leaf nodes represent terminal positions of the game. The leaf value function r
assigns some final score to each terminal game position.
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We now have a formal definition of the game tree that can be used to represent all
possible continuations of a game. When selecting the initial position of a game as
the root, a game tree contains the entire set of positions the game might enter and
even more, as some positions might be reached through different move sequences
(cf. Section 3.2.3). In Section 2.1.2, we mentioned that the number of positions
for 19× 19 Go is expected to be a 171 digit decimal.

In two player games like Go, we can group the game tree nodes according to
the player that is to move in each position. We call the two resulting sets MIN
and MAX and call the according players the MIN player and the MAX player
respectively. We define the leaf value function r to assign a negative score to each
terminal position that yields a win for the MIN player, and a positive score to
winning positions of the MAX player. We can now recursively define the MinMax
value function R for each node of a game tree.

Definition 4 (MinMax Value) Given a game tree G := (V,E, r) of a two-
player zero-sum game, with the set of leaf nodes L, the set of MAX nodes and
the set of MIN nodes, we define the MinMax value function R : V → Z recursively
by:

R(v) =


r(v) if v ∈ L
max{u|(v,u)∈E}R(u) if v ∈ MAX

min{u|(v,u)∈E}R(u) if v ∈ MIN

The MinMax value at any node is exactly the final score of a game that starts at
the nodes’ corresponding position, assuming optimal play by both players. This
leads us to the definition of a best move for arbitrary positions.

Definition 5 (Best Move) Given a game tree G := (V,E, r) with root node v0

and its corresponding MinMax value function R, we define the set of edges that
represent the best moves at position v0 as B := {(v0, vi) ∈ E|R(v0) = R(vi)}.

As we now have a formal definition of a best move to a given game, we will
briefly discuss how the computation of a best move given the complete game tree
information is traditionally realized.

2.2.2 Traditional Game Tree Search Algorithms

For some trivial games, it might be the case that a simple and obvious policy
exists that leads to optimal play. For games where such policies are less obvious
and therefore not known, we can resort to searching the space of possible game
continuations to determine the best moves to any position by computing the game
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tree nodes minmax values. Due to the PSPACE-hardness of generalized N × N
Go, it is pretty certain that no simple and obvious optimal policy exists for Go.
The definitions of the MinMax value function and the definition of the best move
leads us to a basic game tree search algorithm, called minmax.

To compute the set of best moves, given a complete game tree of a two-player
zero-sum game, we can compute the minmax value function recursively, starting
at the leaf nodes and finishing at the root node. We then only have to compare
the direct root successors minmax values with the roots’ minmax value to obtain
the set of best moves according to Definition 5. The described search algorithm
is called minmax-Search. We hereby exhaustively search the whole game tree,
making the approach a so-called brute-force search.

Investigations on the minmax search lead to more efficient variants, the perhaps
most notable among them is the αβ algorithm. The αβ algorithm reduces the
number of nodes of a game tree that need to be searched remarkably. In 1975,
Knuth and Moore [59] proofed that, given a game tree with a constant branching
factor of b and a depth of t, in the best case, the αβ algorithm needs to visit
as few as bbt/2c + bdt/2e − 1 leaf nodes only. During the search process, at some
points, the αβ algorithm allows to cut off entire subtrees that were proofed to
be irrelevant for the minmax value computation due to the insight obtained by
the search so far. The order in that game tree nodes are visited by the search,
however, plays a key role for the amount of game tree nodes that can be omitted
by the algorithm. Being able to safely predict good moves allows for getting near
to the before mentioned lower bound of leaf nodes. Hence, the development of
move prediction systems becomes important.

There are more reasons to investigate the use of heuristics in game tree search,
despite its use for move sorting. Although, with the αβ algorithm, the search
overhead can be reduced significantly, the remaining search space for games like
Chess and Go is several orders of magnitude too large to become computable on
current and future computing machines5. A technique, already mentioned in 1949
by Claude Shannon [90] for the game of Chess, is to artificially limit the search
depth and heuristically evaluate the positions that represent the new, artificial
leafs of the depth-reduced game tree. The use of limited depth αβ search with
several further enhancements brought enormous success in computer chess and
numerous other games. As a general, not surprising rule of thumb, it is the case
that deeper searches lead to better estimated minmax values. An apparently rare
exception to this rule are so-called pathologies in game trees, where deeper search
leads to worse estimates [88][3][71][70][30].

5The number of legal 19× 19 Go positions is several orders of magnitude higher than the estimated number of
atoms in the universe.
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The use of depth-limited αβ search is most efficient if good enough and fast to
compute evaluation functions for arbitrary game positions exist. Most of the
time, the whole tree search bases on outcomes of heuristic position evaluations
instead of exact scores of terminal game positions. Hence, the quality of the
evaluation function is of high importance. Any game tree node’s minmax value,
and accordingly also the decision about the best move, might change, if only
a single leaf node’s evaluation changes. With the objective to make the search
process less prone to evaluation inaccuracies, a search process called Conspiracy
Number Search was proposed by McAllester [74] in 1988. It focuses on ensuring
that the root nodes minmax value can only change if at least c leaf nodes change
their evaluation. c is then called Conspiracy Number. Further enhancements lead
to a more focused search technique called Controlled Conspiracy Number Search
that was investigated in 2000 by Lorenz [68][69].

2.3 Computer Go

Research on Computer Go has a long tradition, reaching back to the 1960s. In this
section, we will give a brief overview of developments in Computer Go throughout
the past 50 years and point out the central role of Computer Go research on the
recent development of Monte-Carlo Tree Search.

2.3.1 History

According to [15], it seems the first Go program was developed in 1960 by D.
Lefkovitz [62] and the first scientific paper was published in 1963 by H. Remus [80].
In 1969, Albert L. Zobrist developed the apparently first Go program that was
able to defeat a human player6 [108][110]. The same Zobrist also published a
very popular hashing method for the game of Go that, given the hash value of
a Go position, allows for an efficient generation of all hash-values of the corre-
sponding rotated, mirrored and color inverted positions by computations on the
hash-value only. The method became very popular and is widely used and known
as Zobrist-Hashing [109] today. Due to the vast amount of possible games (cf.
Section 2.1.2), the high number of move options, the number of move choices
in each single game and the complexity of estimating the value of arbitrary Go
positions, the traditional brute-force search methods, like αβ search, failed for
Go. Accordingly, researchers focused on subproblems like Go for smaller board
sizes [99] or the determination of the so-called life-and-death state of local groups
(cf. Section 2.1.1) [11]. A great deal of work was done by Thomas Wolf on so-called

6The human player that lost against Zobrist’s Go program was called Mr. Cowan. At the time of the experiment,
he was an undergraduate at the University of Wisconsin with a total playing experience of 5 games. Zobrist’s
program was written in ALGOL for the Burroughs B5500 computer.

16



2.3 Computer Go

tsume-go, a class of mostly local Go problems about life-and-death, ko, captur-
ing races and others. He developed the popular program GoTools [106] that is
able to solve a number of difficult tsume-go problems. The improvements towards
tackling local subproblems naturally lead to investigations on combinatorial game
theory, that focuses on dividing games into subgames, solve them individually to
afterwards draw conclusions about the original problem [77][56]. Another source
of improvement was the study of abstractions of Go positions [44] and moves by
shape patterns [12][97]. Both techniques are still used by modern Go programs.
Due to the inapplicability of brute-force search methods, the most successful Go
programs before 2006 were generally knowledge intensive systems composed of pat-
tern based predictors, rule-based expert systems, local αβ searches and databases
of common move sequences, called joseki. Among the most popular Go programs
of that time are The Many Faces of Go [38](MFoG), Go++ and Handtalk. MFoG
was developed by David Fotland and remains one of the strongest Go programs
until today, having adopted to modern algorithms. In 2003, Erik van der Werf et
al. published their results on solving 5× 5 Go [102] with a search based approach
implemented in their program MIGOS (MIni GO Solver). So far, 5 × 5 is the
largest squared board size for that Go was solved.

Despite all of the before mentioned work, from the 1960s onwards, it was the case
that researchers and developers of Go playing programs had major difficulties
to approximate the strength of experienced human players. While for computer
chess, the development of evaluation functions to be used with the αβ search
method and a number of enhancements for the αβ search method itself, lead to
programs that were able to defeat the world’s strongest humans, for decades of
research, the strength of computer Go programs stayed significantly below those of
strong human amateur players. A vital breakthrough was achieved only in 2006,
when Rémi Coulom managed to win an international Computer Go tournament
with his Go playing program CrazyStone, implementing a non-traditional Monte-
Carlo Tree Search (MCTS) approach.

2.3.2 Computer Go as Fertile Ground for Monte Carlo Tree Search

The development of plain Monte-Carlo (MC) approaches in Computer Go is said
to have started in 1993, when Brügmann [20], a German physicist, presented in
his seminal paper Monte Carlo Go a simulated annealing based method to search
for good moves in his Go playing program Gobble. Already in 1987 and 1990,
Abramson proposed [1] and analysed [2] an MC approach, the expected-outcome
model, for the design of generic evaluation functions that can be used, e.g., with
depth limited minimax search. It was only in 2003 that Bouzy and Helmstet-
ter [17] took up Brügmann’s approach and extended it with an efficient way to
grow and store a game tree in memory. Don Dailey achieved a first success with
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his Monte-Carlo simulation based Go program botnoid, when placing 3rd out of
6 at the 1st KGS Computer Go tournament in April 2005. An advanced memory
management was used by the before mentioned Rémi Coulom [27] who dominated
the 2006 Computer Go Olympiade on the 9× 9 game board with his Go program
CrazyStone. Also in 2006, Kocsis and Szepesvári published a highly influential
paper about the Upper Confidence Bounds applied to trees (UCT) algorithm [60]
that extends the Upper Confidence Bounds (UCB) policy for the multi-armed
bandit problem (MAB) proposed earlier by Auer et al. [6] to tree search. UCT
in combination with Coulom’s memory management was in turn used by Gelly et
al. [43] in their Go program MoGo that became even stronger than CrazyStone
at that time. The achievements of both these programs marked the breakthrough
of MCTS in Computer Go and the success of MoGo made UCT the most popular
MCTS algorithm. In the wake of the enormous success of MCTS in Computer Go
numerous researchers adopted the UCT algorithm in subsequent years. In a re-
cent survey of MCTS methods, Browne et al. [19] listed almost 250 MCTS related
publications originating only from the last seven years, which demonstrates the
popularity and importance of MCTS. MCTS is currently emerging as a powerful
tree search algorithm yielding promising results in many search domains requiring
only little or no domain knowledge at all. MCTS also performs remarkably well
for games other than Go, such as connection games Hex [5] and Havannah [98],
combinatorial games Breakthrough [67] and Amazons [66] as well as General Game
Playing [37] and real-time games. Apart from games, MCTS finds applications
in combinatorial optimization [60], constraint satisfaction [86], scheduling prob-
lems [78], sample-based planning [41] and procedural content generation [73].
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CHAPTER 3

Monte-Carlo Tree Search

This chapter is devoted to the formal introduction of the family of Monte Carlo
Tree Search (MCTS) algorithms. We will describe the basic framework in detail
and briefly discuss a number of extensions that proved to be beneficial for Com-
puter Go and other domains. An overview of the history and development of
MCTS based algorithms can be found in Section 2.3.2.

3.1 Terminology

As induced by the name itself, MCTS is designed to search in domains that can
be represented as trees. Throughout this thesis, we will mostly consider game
trees as search domains (cf. Section 2.2.1 for the definitions of tree and game
tree), or more strictly, game trees of combinatorial games. To motivate our choice
and characterize the set of domains where MCTS is applicable, we extend our
collection of formal definitions to Markov Decision Processes and Combinatorial
Games.

Known from, e.g., decision theory, Markov decision processes (MDPs) are used
to model sequences of decisions that lead to some kind of reward for the decision
maker.

Definition 6 (Markov Decision Process) A Markov Decision Process is a 4-
tupel MDP := (S,A, T, r) of a set of states S, a set of actions A, a transition
model T (s, a, s′) that determines the probability of reaching state s′ ∈ S when
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3 Monte-Carlo Tree Search

choosing action a ∈ A in state s ∈ S, and a reward function r(s, s′), that assigns
some reward for transitions from state s to s′.

In any state, a decision maker has to choose one action of the set of possi-
ble actions A that will lead him to a subsequent state, based on some proba-
bility distribution given by the transition model T . For any state transition,
the decision maker obtains some reward. The uncertain transitions, based on
a probability distribution, make MDPs so called discrete time stochastic con-
trol processes, that lead to a, possibly infinite, sequence of states and actions
(s1, a1, s2), (s2, a2, s3), . . . , (sn−1, an−1, sn) and a corresponding total reward R =∑n−1

t=1 r(st, st+1).

A general problem to solve for MDPs, is the identification of a policy for the deci-
sion maker, typically denoted by π : S → A, that, for any given state, determines
the corresponding action that must be selected in order to maximize the decision
maker’s expected total reward. MDPs are among the most general search domains
that can be tackled with the MCTS approach (cf. [60]). We will now introduce a
more specific class of problems that includes games like Chess and Go. It is the
class of problems that were subject of intensive MCTS related research in recent
years.

In game theory, a Combinatorial Game describes a decision process with two
decision makers (i.e. players) involved that pursue opposed objectives:

Definition 7 (Combinatorial Game) We write a two-player game as a tuple
G := (S,A,Γ, δ, r), with S being the set of all possible states (i.e. game positions),
A the set of actions (i.e. moves) that lead from one state to the next, a function Γ :
S → P(A) determining the subset of available actions at each state, the transition
function δ : S × A → {S, ∅} specifying the follow-up state for each state-action
pair where δ(s, a) = ∅ iff a /∈ Γ(s) and a reward function r : St × P → (−1, 1)
assigning a reward to each terminal state St := {s ∈ S|Γ(s) = ∅} for each of
the two players p1, p2 ∈ P . If r(s, p1) = −r(s, p2) for any s ∈ S, we call G a
zero-sum game. We call G a Combinatorial Game if it is a zero-sum, two player
game, where actions are applied in alternate turns by both players and the entire
information about the game (i.e. S,A,Γ, δ and r) is available to both players at
any time.

Combinatorial games have a clear and simple definition, making them especially
interesting as testbeds for artificial intelligence research. At the same time, they
cover a large number of real-life games that are generally accepted to be highly
complex. Given some start state s0 ∈ S, a combinatorial game can be represented
as a game-tree. We devote the next section to an introdution of the basic algorith-
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mic framework of Monte-Carlo Tree Search and its application to combinatorial
games.

3.2 Basic Algorithmic Framework

Monte-Carlo Tree Search is a simulation based search algorithm. Given an MDP
and a current state s0 ∈ S, a simulation is a sequence of states and actions
starting at s0, combined with the corresponding reward obtained. The state-action
sequence is hereby generated by a decision maker using some partly randomized
policy. Respectively, for a combinatorial game, a simulation is a path in the game
tree starting at state s0 denoted by the root node, to some terminal state with its
associated reward. Again, the path is chosen by some partly random selection of
actions in each state along the path. The central part of MCTS is the computation
of such simulations.

Breaking with the initial randomness in the selection policy, MCTS starts to guide
future simulations based on the outcomes of former ones. This imposes the need
to store statistics about simulation rewards for distinct states. As typically a large
number of different states are visited in the course of a search run, storing reward
statistics for all visited states creates a huge demand for memory. Hence, for
feasibility reasons, practical MCTS implementations only keep reward statistics
for near-root tree nodes in memory. A way for an efficient memory usage was
proposed in [27]. Here, a search tree representation T is generated in memory by
initially starting with the root node only and expanding T by adding one node
in each simulation step according to some selection policy πt. This results in
efficient and predictable memory usage, as the memory tree T likely grows in the
most interesting branches and a maximum of one tree node is added with each
additional simulation. Once a simulation leaves T , a randomized heuristic policy
πp is used for action selection until a terminal state is reached, i.e., a leaf of the
game tree. We denote the randomized heuristic policy πp as playout policy and
the history dependent one used for nodes covered by T as in-tree policy πt.

Essentially, MCTS algorithms break down into the four building blocks Selection,
Expansion, Playout and Update as shown in Figure 3.1. These building blocks,
that together make up a single simulation, are repeated in an endless loop. We
can stop MCTS after any iteration to obtain the best action found so far, making
MCTS a so called any-time algorithm. A search run is typically limited by some
fixed number of simulations or a time budget.

Algorithm BasicMCTS on page 22 shows a pseudo-code representation of the basic
MCTS algorithmic framework. The block around line 5 implements the selection
phase. T is expanded with the first state reached, that is not already covered by
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(a) Select a path in
T according to
the in-tree policy
πt using statistics
that are stored for
states covered by
T .

(b) Expand the
memory tree T
with one node
each time a sim-
ulation leaves
T .

(c) Compute a Play-
out and the cor-
responding reward
following the play-
out policy πp until
a terminal state is
reached.

(d) Update statistics
at all nodes in T
along the chosen
path with the re-
ward obtained at
the terminal state.

Figure 3.1: Building blocks of MCTS.

T in line 9. In line 10, the playout and its corresponding reward is computed.
The reward is thereafter used to update the statistics of all states in T that were
visited during the simulation, represented by the call of an update procedure in
line 11.

Algorithm BasicMCTS: Basic MCTS-Algorithm.

Data: A combinatorial game G := (S,A,Γ, δ, r).

Input : A state s0 ∈ S and a time limit.
Output: An action a ∈ Γ(s0).

1 T ← s0; // Initialize memory tree

2 d← 0; // Initialize depth variable

3 while Time available do
4 if sd ∈ T then
5 ad ← πt(sd); // Action selection following in-tree policy

6 sd+1 ← δ(sd, ad);
7 d← d+ 1;

8 else
9 T ← T ∪ sd; // Expand memory representation of search tree

10 reward ← Playout (sd); // Compute a playout

11 Update (reward); // Update statistics for visited states and actions

12 d← 0; // Start a new simulation

13 end

14 end
15 return argmaxa∈Γ(s0)Ns0,a; // Return action that was simulated most often

Looking at this general framework, we identify a number of points that need a
more precise description when it comes to an actual implementation for a specific
search domain. One central part, is the definition of the in-tree policy πt for
action selection based on former simulation rewards. A key task of the policy
is the handling of the so called exploitation-exploration dilemma. The dilemma
describes the opposed objectives of targeting at the exploitation of actions that
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Function Playout(s)

Data: G := (S,A,Γ, δ, r) as described in the text.

Input : A state s ∈ S that is the starting point of the playout.
Output: The reward obtained at the terminal state of the playout.

1 while Γ(s) 6= ∅ do
2 a← πp(s); // Action selection following playout policy

3 s← δ(s, a);

4 end
5 return r(s); // Return simulation reward at terminal state

Procedure Update(reward)

Data: The sequence of states and actions (s0, a0), (s1, a1), · · · , (sd, ad) visited by the simulation.

Input : A reward value.

1 i← 0;
2 while i ≤ d do
3 UpdateStateActionStatistics ((si, ai),reward);
4 i← i+ 1;

5 end

yielded good rewards in the past while aiming at exploring other actions because
they might yield even better payoffs in the long run. As this basic problem is
unrelated to a specific search domain, we will discuss it here, in the context of the
basic MCTS framework.

3.2.1 Bandit Based In-Tree Policy πUCT

An in-tree policy πt is used to determine an action to be taken at a given state.
Hence, it is of the form πt : S → A. To decide for an action, the policy can make
use of the history of actions applied at the given state by former simulations as
well as the history of the corresponding rewards obtained. Accordingly, it should
be regarded as part of the policy design to determine the kind and extent of data
about former simulations that is stored for each state.

We focus our discussion to the most prominent general MCTS in-tree policy that
yielded great results for a large number of search domains. The policy was pro-
posed for the use with MCTS in Kocsis and Szepesvári’s seminal paper on bandit
based Monte-Carlo planning [60] and is today known as the UCT policy. UCT is
short for Upper Confidence bounds applied to Trees. The development of UCT is
based on prior research on the multi-armed bandit problem (MAB), that basically
formalizes the before mentioned exploitation-exploration dilemma.
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Definition 8 (Multi-Armed Bandit (MAB)) A K-armed bandit is a number
of K independent gambling machines (i.e. single arm bandits) that each yield inde-
pendent and identically distributed rewards from a fixed but unknown distribution
with unknown expectations µi, for 1 ≤ i ≤ K.

The Multi-Armed Bandit problem is to determine a gambler’s policy π, for sub-
sequent play of one arm of the bandit at a time, with the objective of maximizing
the gambler’s reward. Hereby, the policy can use the information about rewards
obtained with each arm over time. The notion of the regret is used to describe the
loss of the gambler resulting from not always playing the optimal arm.

Definition 9 (Regret) The regret of a policy π after n plays is given by

µ∗n− µj
K∑
j=1

E[Tj(n)] where µ∗ := max
1≤i≤K

µi,

E[·] denotes expectation and Tj(n) is the number of times arm j was chosen during
the n plays.

In 1985, Lai and Robbins [61] proved that, for any optimal policy π that solves the
MAB problem, a lower bound for the number of plays of any suboptimal arm j to
be Tj(n) ≥ ln(n)/

∫
pj ln(pj/p

∗). Here, pj denotes the Probability Density Func-
tion (PDF) for the reward distribution of arm j, and p∗ is the corresponding PDF
of an optimal arm. The authors were even able to develop a policy that asymp-
totically attains this bound. However, the policy given by Lai an Robbins was
rather hard to compute and the regret bound was only retained asymptotically.
In 2002, Auer et al. [6] published efficiently computable and easy to implement
policies with logarithmically bounded finit-time regret. Among those policies, the
one they called UCB1, short for Upper Confidence Bound 1, became especially
important for MCTS and will thus be presented here.

Definition 10 (UCB1) The MAB policy µUCB1 choses the next arm of a K-
armed bandit after n former plays as follows:

µUCB1 := argmax
1≤j≤K

x̄j +

√
2 lnn

Tj(n)
,

where x̄j denotes the average reward obtained with arm j during the former Tj(n)
plays. Initially, each arm is played once.

The square root term actually represents a one sided confidence interval for the
unknown expected mean reward. Hence, the whole expression denotes a confidence
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bound for x̄j, giving rise to the policy’s name. Looking at the formula with the
exploitation-exploration dilemma in mind, we see the left hand term, i.e., x̄j,
striving for exploiting arms that yielded high rewards in the past while the right
hand term looks for exploring arms that might be underestimated by now. We
see that, for each arm, the policy solely works on the average reward obtained and
the number of times the arm was chosen in the past. Certainly, summing up the
obtained rewards over time and counting the number of plays appears to be very
efficient from the computational and memory usage perspective.

In 2006, Kocsis and Szepesváris [60] proposed the use of a variant of UCB1 for
the MCTS in-tree policy µt, with the introduction of the before mentioned Upper
Confidence Bounds applied to trees (UCT) algorithm. Thereby, each action selec-
tion step for states covered by the search space’s memory representation T ⊆ S
is considered as an independent multi-armed bandit. Following our observation
above, to apply UCB1, we need to maintain statistics about former simulation
rewards in the form of the sum of obtained rewards and the number of times an
action was chosen at each state covered by T . Accordingly, for each state s ∈ T
and its corresponding actions a ∈ Γ(s) we maintain two variables in memory: Ns,a,
that represents the number of simulations where action a was applied in state s
and Ws,a to keep the cumulative reward obtained by those simulations. We fur-
ther write Ns :=

∑
a∈Γ(s) Ns,a. Given this notation, the UCT policy is defined as

follows:

Definition 11 (UCT) The MCTS in-tree policy πUCT selects the next action at
any given state s ∈ T by

πUCT(s) := argmax
a∈Γ(s)

Ws,a

Ns,a

+ C

√
2 lnNs

Ns,a

,

where C > 0 is a constant.

The novelty of this policy, compared to UCB1, is the introduction of the con-
stant factor C for the exploration term. Due to the recursive use of µUCT in the
search tree, the sequence of experienced rewards becomes non-stationary, i.e., the
expected mean reward might drift over time. Kocsis and Szepesvári have proven
that appropriate values for C can be determined at each state, that ensure a con-
vergence of the sample means towards the correct expectations with overwhelming
probability. Mind that C, being a factor of the right hand term of the policy equa-
tion, directly influences the weighting between exploitation and exploration, where
larger values lead to more exploration.

We obtain the UCT algorithm from the basic MCTS algorithmic framework by
replacing πt with πUCT in Algorithm BasicMCTS and by replacing the call to the
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update procedure for state-action pairs in procedure Update (cf. page 23) at line 3
by a call to UpdateStateActionStatisticsUCT, that is given below.

Procedure UpdateStateActionStatisticsUCT((s,a),reward)

input : A state-action pair and a reward value

1 Ns,a ← Ns,a + 1;
2 Ws,a ←Ws,a + reward;

At each search tree node, the UCT policy targets at maximizing the cumulative
reward observed. Accordingly, for two player games like Go, the reward must be
appropriately inverted during the statistic’s update. In case of Go we use a reward
function that returns 1 for each terminal position in that Black has won and 0 for
a win of White. In case of a draw, 0 or 1 is returned uniformly at random leading
to an expected sample mean of 0.5. Hence, during the statistic’s update phase, an
obtained reward r is added to Wsi,ai for all states si in that the black player is to
move, while 1− r must be added at all other states for the UCT policy to work as
intended. In the remainder of this thesis we will concentrate solely on this special
case of binary rewards, if not stated otherwise.

3.2.2 First Play Policy

A problem that arises when using UCT as introduced above, is the need for
statistics for all actions available at a given state to select an action. Neither x̄
nor the confidence bound is computable for actions when they appear as possible
choices for the first time. Following the definition of UCB1 (cf. Definition 10 at
page 24), prior to applying the actual selection formula given, each arm, i.e., each
action, must be played once. For example for the game of Go, with an average
number of about 200 move choices available in each position, the overhead for such
initializations becomes high and requires to search a large number of potentially
bad variations. Consequently, the selection policy at recently discovered states
turned out to be crucial for the performance of UCT.

A number of different approaches for tackling this issue were proposed. One of the
most straight forward approaches, proposed in [43], is the assignment of a fixed,
so called first play urgency to each not yet applied action available at a state,
that is used as the action’s value in πUCT. An alternative is the assignment of
prior values to Ns,a and Ws,a. If expert knowledge is available that allow for an
estimation of the relative value of actions available at a state, the assignment of
adequately derived prior values can lead to substantial improved search quality.
While the fraction Ws,a/Ns,a must reflect the action’s estimated value, the choice
of Ns,a defines the initial weight of the prior. If the prior’s value for Ns,a is
initially chosen to be, e.g. 5, the quality of the action value’s estimate is expected
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to be identical to the quality of the average reward obtained from 5 simulations.
Chaslot et al. [25] proposed to add another term to the original UCT formula that
yields an initial action value that is derived from expert knowledge and that is
down-weighted with increasing numbers of samples. They called their approach
Progressive Bias (cf. Section 3.3.2).

3.2.3 Handling of Transpositions

In some search domains, it might be possible to reach the same state through
different state-action sequences. Hence, eventually the resulting search space is a
directed acyclic graph instead of a tree. We call such multiple paths leading to the
same state transposition, and a corresponding data structure that contains such
transpositions a transposition table. Accordingly, the search space representation
T , constructed during the MCTS search should be organized as a transposition
table. Transposition tables can be efficiently implemented in form of hash maps.
An obvious requirement is the feasibility of constructing a hash function for the
search domain’s state space, i.e., an injective function h : S → N, that uniquely
maps each state s ∈ S to a scalar value. Some authors of UCT based MCTS
searchers prefer to store the statistics about an action a available in state s,
i.e., Ns,a and Ws,a, in the transposition table entry corresponding to the unique
subsequent state s′ = δ(s, a). In contrast, we propose to store the statistics of
all possible action choices with the corresponding states in that the actions where
applied. That is, we argue for storing Ns,a and Ws,a for all a ∈ Γ(s) in the
transposition table entry of state s, pointing to the fact that πUCT will regularly
iterate over all such values, leading to reduced overhead due to fewer transposition
table accesses and more effective usage of memory caches.

In 1969, Albert L. Zobrist published a hashing method for the game of Go that,
given the hash value of a Go position, allows for an efficient generation of all hash-
values of the corresponding rotated, mirrored and/or color inverted positions only
with computations on the hash-value itself. This can be helpful as, e.g., two Go
positions that are rotations of each other will have the same appropriately rotated
best action. The method is today known as Zobrist-Hashing [109]. In addition
to that, in the MCTS context, Enzenberger and Müller [35] described a lock-free
implementation of a transposition table based on the use of atomic instructions,
that allows for very efficient concurrent access in shared memory environments.
We deal with transposition tables and concurrent accesses to them in detail in
Section 4.2.3.
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3.3 Enhancements to Basic MCTS

As part of the MCTS revolution in Computer Go, several enhancements to the
original algorithm were developed, generally in form of modifications to the in-tree
policy and the kind of statistics its design is based on. Among the most general
and powerful are variants of so called All-Moves-As-First heuristics, that allow
for faster generation of low variance estimates for state-action values. In addi-
tion, some progressive pruning strategies were proposed and investigated.Those
strategies initially limit the number of actions considered and progressively widen
its scope to more actions with increasing number of simulations. These strategies
need a heuristic ordering of the available actions that is also crucial for its effi-
ciency. We will present some of the most prominent variants of such enhancements
in the remainder of this section.

3.3.1 RAVE: Rapid Action Value Estimate

RAVE is short for Rapid Action Value Estimate and was proposed in 2007 by
Gelly et al. [42]. It is a form of the before mentioned family of All-Moves-As-First
(AMAF) heuristics. We will first briefly introduce and discuss the basic AMAF
idea to later on derive the RAVE approach from basic AMAF.

AMAF was already mentioned by Brügmann [20] in 1993. It is based on the
idea that, in the course of an MCTS simulation, at a given state s, not only the
action applied in s leads to the simulation’s final reward, but the whole sequence
of actions that were applied until a terminal state was reached. Hence, if some of
those actions were already applicable in s, their corresponding statistics can be
updated in the same way as it is done for the actually chosen action in s. Or,
saying it in the words used in the heuristics name: during the update process, all
actions in the sequence of actions applied in the course of a simulation are treated
as if they were applied first.

Our regular state-action statistics as being used for UCT, are made up by two
counters, one that counts the number of simulations (Ns,a) that applied action
a in state s, while the other (Ws,a) sums up the rewards obtained at the end of
each such simulation. For AMAF, instead, we maintain two counters, NAMAF

s,a

and WAMAF
s,a for each state-action that are updated not only for actions that are

selected directly at a given state, but also for actions selected at any time in
the remainder of a simulation. Thus, consider a simulation with the following
sequence of state-actions: (s1, a1) → (s2, a2) → (s3, a3) → · · · → (sk, ak) that
yields the reward r(sk). The sequence will end up in increments of the following
counters: Nsi,aj , Wsi,aj , for all 1 ≤ i ≤ j ≤ k with aj ∈ Γ(si), i.e., action aj is
available at state si and was applied during the simulation at state si or later. In
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case of two or more player games, only actions applied by the same player should
be considered for AMAF updates.

AMAF can lead to much faster low variance estimations for state-action values
as, for the same number of simulations, more reward samples might be incorpo-
rated compared to the standard UCT update procedure, depending on the search
domain. However, it is important to note that this is achieved by sacrificing the en-
tire sequentiality information during the reward update. In search domains where
the exact sequence, in that actions are applied, is irrelevant, AMAF can greatly
increase the search quality for fixed numbers of simulations. In the case of combi-
natorial games, however, the sequentiality is generally not negligible and ignoring
it can lead to severe estimation errors. In case of Go, it appears that the sequen-
tiality can be ignored only to a certain extend. Moves that appear reasonable at
a certain state, might remain reasonable for longer, if not played immediately. In
the end, however, the correct order of the moves remains extremely important.

The enhancement of RAVE to AMAF, is the idea of using a linear combination
of both statistics, i.e.,

(1− β)
Ws,a

Ns,a

+ β
WAMAF
s,a

NAMAF
s,a

with β ∈ [0, 1] ,

and to move the weighting of the statistics with increasing numbers of observa-
tions towards Ws,a/Ns,a. This makes sense, as in the initial phase, the regular
UCT statistics have high uncertainties whereas the AMAF statistics become re-
liable more early. Over time, the UCT statistics that preserve the sequentiality
information, become more valuable and consequently should supersede the AMAF
values. Hence, in the formula above, β becomes a steadily decreasing function over
the number of simulations (either nu := Ns,a or na := NAMAF

s,a ), i.e., β : N→ [0, 1].
The actual choice of β is key and was initially proposed in [42] as

β(nu) :=

√
k

3nu + k
,

for some equivalence parameter k, that must be selected as the number of simula-
tions that is assumed to make the quality of the regular UCT statistics equivalent
to the AMAF statistics quality.

Later on, David Silver [91] presented another formula for β that lead to an in-
creased search quality for several Go engines that used RAVE at that time:

β(nu, na) :=
na

nu + na + 4nunab2
a

.

It was derived be making some simplifying assumptions on the underlying reward
distributions and the objective of minimizing the mean-squared error of the RAVE
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value under these assumptions. The formula depends on both, the number of
updates included in the basic UCT statistics (i.e. nu = Ns,a), as well as those
included in the corresponding AMAF statistics (i.e. na = NAMAF

s,a ). There still
remains a constant ba that represents the AMAF bias, i.e., the estimated error
between the AMAF and regular UCT value: ba = WAMAF

s,a /NAMAF
s,a −Ws,a/Ns,a.

By adding the exploration term, we obtain the resulting RAVE policy:

Definition 12 (RAVE) The RAVE policy πRAVE selects the next action at any
given state s ∈ T by

πRAVE(s) := argmax
a∈Γ(s)

(1− β(nu, na))
Ws,a

Ns,a

+ β(nu, na)
WAMAF
s,a

NAMAF
s,a

+ C

√
2 lnNs

Ns,a

,

where C > 0 is a constant,nu = Ns,a and na = NAMAF
s,a .

While we concentrate on RAVE throughout this thesis, investigations on further
variants of AMAF in the context of Computer Go can be found, e.g., in [48].

3.3.2 PB: Progressive Bias

Major improvements in Computer Go were made by the use of expert knowledge
gathered from large databases of Go games using machine learning. Once expert
knowledge is available and can be used for probabilistic move prediction, it is
crucial how to use this additional information in MCTS. The Progressive Bias
(PB) [25] approach proposes the use of move ranking information to assign prior
values to newly discovered tree nodes that are evened out when regular simulation
statistics become more meaningful. Given some function H : S × A → R, that
assigns a heuristic value to each state-action pair (e.g. following some expert
knowledge), they propose a slightly modified UCT selection policy of the following
form:

πPB(s) := argmax
a∈Γ(s)

Ws,a

Ns,a

+ C

√
2 lnNs

Ns,a

+
H(s, a)

Ns,a

.

Here, the last term in the sum is the progressive bias term. By using a function H
that is derived from the playout policy πp, a smooth transition between the in-tree
part and the playout part can by realized. In our own experiments we obtained
satisfying results with

H(s, a) =
πp(s, a)∑

a′∈Γ(s) πp(s, a
′)

.
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3.3.3 PW: Progressive Widening

Both, Chaslot et al. [25] and Coulom [28] independently proposed progressive
strategies called Progressive Unpruning and Progressive Widening (PW) respec-
tively, that both, for each state, initially starting with a small number of actions,
progressively widen the view to more actions with increasing number of simu-
lations. Like for PB, these strategies need a heuristic ranking of the available
actions that is also crucial for its efficiency. We denote the ranking function with
R : S × A→ N and expect it to assign ranks to state-action pairs, that induce a
strict order of all actions available at a state s. Hence, there exists an indexing
of the set of all actions applicable at state s, with R(s, a1) > R(s, a2) > · · · >
R(s, a|Γ(s)|).

During the in-tree phase of a standard UCT search, the idea is to prune all ac-
tions applicable at state s, except the highest ranked action a1. With increasing
numbers Ns =

∑
a∈Γ(s) Ns,a of simulations that visit state s, the number of ac-

tions being considered for selection is progressively increased. While Chaslot et
al. [25] give no details about the actual unpruning policy, Coulom [28] proposes
to successively add action an+1, after tn+1 simulations have visited state s, where
tn+1 = tn + 40 · 1.4(n−1) and t1 = 0.

3.4 Playout Policies πp

The playout policy (alos known as default policy or rollout policy) is a critical
part of MCTS implementations. At the end of a playout, when a terminal state is
reached, it yields the final simulation reward1. The simulation rewards are in turn
the central data of MCTS algorithms, as future simulations are guided following
computations on them. Especially for search domains with heavily delayed payoffs,
i.e., for domains that require long sequences of action selections until a final reward
is obtained, the design of the playout policy becomes a key challenge. This is
because, the more actions need to be applied in the course of a simulation, the
larger will be the ratio of actions applied by the playout policy to action applied
by the in-tree policy. Consequently, a lot of research was carried out on playout
design. While the policy development is often highly domain specific, again, we
will focus our attention on research related to Computer Go and give an overview
of the work published in recent years.

1This is the case for combinatorial games at least. For other search domains, like MDPs, rewards might be
obtained with each state transition.
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3.4.1 Random Policies

One of the most basic kinds of MCTS playout policies is the completely random
one. It selects actions uniformly at random from the set of available actions at
each state. Although such a policy can be described as kind of stupid, it has a
number of features that are worth to mention:

• Random policies have mostly negligible sequential dependencies between con-
secutive action decisions. This makes them especially attractive for use
with AMAF heuristics. This is because the sequence of action choices made
throughout each single playout might be permuted to large parts, still leading
to valid state-action sequences with almost equal probability of being chosen
by the same policy. Hence, the AMAF bias, as mentioned in Section 3.3.1
becomes close to zero.

• They obviously have no need for domain knowledge.

• They are balanced, i.e., in two or more player games, they play equally good
(or bad) for both players. Non-random or semi-randomized policies can
contain strategical imbalances that lead to biased rewards. This would be
the case if, e.g., in a two-player game, the policy prefer attacking moves but
not the respective defending answer moves.

The properties listed above make random policies appealing for fundamental re-
search on MCTS.

In terms of simulations computable per time unit,  Lucasz Lew implemented a
highly efficient MCTS based search engine called libEGO2 for the game of Go
with random playouts, that greatly serves as a base for fundamental research [64].
In his implementation, he allows for all legal moves for selection, except those that
would fill eyes of size one (cf. the definition of eyes in Section 2.1.1). We will denote
this exception the 1-eye rule in the remainder. By preventing the placement of
stones into eyes of size one, groups can become alive and consequently the number
of empty intersections, and thereby the number of legal moves, decreases over time.
This considerably reduces the average number of move decisions to be made in
the course of a simulation.

Apart from the above mentioned properties, however, completely random policies
show bad performance when being used in Computer Go engines. Adjusting the
distributions used for action selection towards favouring good moves and penaliz-
ing bad ones can lead to greatly improved search quality. Here, the classification
of good and bad moves will obviously be made heuristically.

2  Lucasz Lew’s libEGO is available online at: https://github.com/lukaszlew/libego
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3.4.2 Handcrafted Policies

The first published playout policies for MCTS based Go programs were hand-
crafted [27][43], i.e., the designer himself used his own Go knowledge to decide for
the next move to play in each board configuration. Typically, handcrafted policies
are fast and easy to compute leading to many simulations that are computable
per time unit.

Coulom [27] used a random playout policy with the 1-eye rule described at the end
of Section 3.4.1, as the base of his playout policy design. But instead of selecting
moves uniformly at random, he increased the weight of moves to intersections
that represent last liberties of groups. Those moves will lead to a capture if the
corresponding group is of the opponent color, or might prevent captures in case
the group is of the player’s color. His policy furthermore favors some moves that
explicitly create 1-eyes and discourages the choice of some obviously bad moves.

Gelly et al. [43] extended the policy of Coulom with the notion of local answer
moves. While Coulom focused on moves to intersections that are last liberties of
any group, all over the board, Gelly et al. concentrated on playing on intersections
close to the last move. They therefore created a set of 3x3 shape patterns that
defined interesting local moves and tested for them on the 8-neighborhood of the
move played last. The 8-neighborhood of an intersection is the set of orthogonally
and diagonally directly neighboring intersections. A 3x3 shape pattern is defined
around some empty intersection and explicitly specifies the configuration of the
empty intersection’s 8-neighborhood. If interesting local answer moves exist, the
policy selects one of them uniformly at random. Otherwise, Coulom’s policy
mentioned above is used as the fall back policy. By including this notion of
locality, Gelly et al. were able to greatly improve the playing strength of their
Go playing program Mogo. This kind of policy is sometimes denoted as sequence-
like to emphasize the effect of playing very local or Moggy-style to stress the
combination of policies that were initially used in the two Go playing programs
Mogo and CrazyStone.

3.4.3 Machine Learning Based Policy Design

Crafting playout policies by hand naturally limits the number of parameters that
can be used in a meaningful way to define a probability distribution used for move
selection. Even further, the hand tuning of parameters generally requires numer-
ous and time intensive experiments to measure the effect of parameter changes
on the search quality, i.e., the playing strength in case of games. This makes ma-
chine learning interesting for automated or semi-automated design of policies. A
number of approaches were investigated in the past to develop and automatically
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train models for move decisions. This includes approaches of supervised learn-
ing [96][28][105], where move values are learned from records of Go games played
by strong humans as well as reinforcement learning techniques [16][42][92][93][51].

Among the reinforcement learning techniques, an especially interesting approach
is the so called technique of Simulation Balancing (SB), initially described by Sil-
ver [93] and further investigated by Huang et al. [51]. Instead of learning a system
that is able to play good moves in the game of Go, it focuses on learning a playout
policy that leads to an average reward equal to a former defined target reward
by stochastic gradient descent optimization. The approach is especially relevant
as further investigations revealed that stronger playout policies, i.e., policies that
select moves like strong Go players might do, can lead to decreasing search qual-
ity [16][23]. SB tries to circumvent this problem and lead to promising results for
the 9 × 9 Go board but unfortunately not for larger board sizes [93]. A strong
Go program implementing SB is the program Erica, by Shih-Chieh (a.k.a. Aja)
Huang.

A number of supervised learning algorithms are discussed in more detail in Chap-
ter 5.
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CHAPTER 4

Parallel Monte-Carlo Tree Search1

In this chapter, we present and empirically analyze a novel data-driven paral-
lelization approach for Monte Carlo Tree Search algorithms, targeting large HPC
clusters with fast network interconnect. The power of MCTS strongly depends
on the number of simulations computed per time unit and the amount of memory
available to store data gathered during simulation. High-performance computing
systems such as large compute clusters provide vast computation and memory
resources and thus seem to be natural targets for running MCTS.

MCTS may be classified as a sequential best-first search algorithm [91], where
sequential indicates that simulations are not independent of each other, as is often
the case with Monte-Carlo algorithms. Instead, statistics about past simulation re-
sults are used to guide future simulations along the search space’s most promising
paths in a best-first manner. Looking for parallelization, this dependency could
partly be ignored with the aim of increasing the number of simulations for the
price of eventually exploring less important parts of the search space. Paralleliza-
tion of MCTS for distributed memory environments is a highly challenging task
since typically we want to adhere to simulation dependencies and, additionally,
we need to store and share simulation statistics among computational entities.

Parallelization of traditional αβ search is a pretty well solved problem, e.g.,
see [31][32][50]. While for αβ search it is sufficient to map the actual move stack to
memory, MCTS requires us to keep a steadily growing search tree representation
in memory. Targeting at optimal utilization of the available resources, our algo-

1We presented parts of the work presented in this chapter before at different stages of its development: At the
MCTS Workshop of the Int. Conf. on Automated Planning and Scheduling (ICAPS) in 2011 [45], as well as
at the Euro-Par Conference 2011 [87]. A further article is currently under review at the IEEE Transactions
on Computational Intelligence and AI in Games (T-CIAIG).
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rithm spreads a single search tree representation among all compute nodes (CNs)
and guides simulations across CN boundaries using message passing. In the con-
text of MCTS, sharing a search tree as the central data structure in a distributed
memory environment is rather involved and only few approaches have been inves-
tigated so far [13][107]. A comparable approach used with traditional αβ search
was termed transposition table driven work scheduling (TDS) [85]. Computing
more simulations in parallel than distinct compute resources are available, allows
us to overlap communication times with additional simulations.

We integrate our parallel MCTS approach termed Distributed-Tree-Paralleliza-
tion in our state-of-the-art Go engine Gomorra [45] and measure its strengths and
limitations in a real-world setting. Our extensive experiments show that we can
scale up to 128 compute nodes and 2048 cores and, furthermore, give promis-
ing directions for additional improvement. The generality of our parallelization
approach advocates its use to significantly improve the search quality of a huge
number of current MCTS applications. We present an efficient parallel transpo-
sition table highly optimized for MCTS applications in time critical use cases.
Even further, we propose the use of dedicated compute nodes (CNs) to support
necessary broadcast operations, that allow for greatly reducing network traffic by
multi-stage message merging.

All experiments are run on a homogeneous compute cluster with 4xQDR Infini-
band interconnect. Our implementation is based on the OpenMPI library and
exploits capabilities for low latency RDMA communication of tiny messages.

Our Go engine Gomorra has proven its strength at the Computer Olympiad 2010
in Kanazawa, Japan, the Computer Olympiad 2011 in Tilburg and several other
international Computer Go tournaments. Gomorra is regularly placed among the
strongest 6 programs and recently won a silver medal at the Computer Olympiad
2013 in Yokohama, Japan.

4.1 Related Work

In this section, we review parallelization approaches for MCTS that were de-
veloped and investigated in recent years. They can roughly but not strictly be
grouped into approaches targeting shared memory systems, distributed memory
systems and accelerator hardware like general purpose graphic processing units
(GPGPUs) and field programmable gate arrays (FPGAs).

Depending on the target platform we distinguish different compute entities that
can be single cores of a multi core processor or entire nodes of a compute cluster
that might contain a number of multi core processors each. In the remainder of
this section, we will use the term compute entity (CE) for simplicity when we
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write about distinct computing units that might either be single cores or entire
compute nodes.

4.1.1 Parallelization for Shared and Distributed Memory

The most prominent parallelization methods presented so far were termed Tree-
Parallelization, Leaf-Parallelization and Root-Parallelization by Chaslot et al. [24]
in 2008. Those terms are widely used until today, although different terms de-
scribing variations of these principle approaches can be found in the literature.
Illustrations of these methods are depicted in Figure 4.1. In this figure, different
colors represent simulations performed by different compute entities (CEs).

Tree-Parallelization

The Tree-Parallelization approach (cf. Figure 4.1a) is designed to be used on
shared memory systems, that allow for sharing one search tree representation
among several compute cores in shared memory. Each core performs one simu-
lation at a time and updates a single shared transposition table that represents
the search tree. A crucial part in practical implementation is the serialization
of write accesses to the transposition table. This includes the adding of search
tree nodes to the table in the expansion phase of MCTS, as well as the update of
state-action statistics. Both forms of write accesses can be realized in a lock-free
manner on modern shared memory systems by the use of atomic instructions.
A detailed description of lock-free transposition tables is given in Section 4.2.3.
Tree-Parallelization was first proposed and investigated in [24]. Later on, in 2009,
Enzenberger et al. [35] published their work on a lock-free implementation of a
transposition table for shared memory parallel MCTS in the context of Computer
Go. Already in March 2008, Coulom posted his results and implementation details
on a lock-free transposition table to the Computer Go mailing list2. Moreover,
chess programmers have been using lock-free implementations of transposition
tables for many years, cf. [55].

Leaf-Parallelization

Leaf-Parallelization (cf. Figure 4.1b) concentrates on the playout phase of MCTS
that starts on the leafs of the search tree representation and exploits the inde-
pendence of playout computations. While the in-tree part of MCTS makes use of

2Coulom’s mail to the Computer Go mailing list about a lock-free transposition table in the MCTS context was
sent in 2008 on the 21st of March and is available online at:
http://www.mail-archive.com/computer-go@computer-go.org/msg07611.html
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(a) Tree-Parallelization

(b) SLMP-Leaf-
Parallelization

(c) MLMP-Leaf-
Parallelization

synchronize

(d) Root-Parallelization

Figure 4.1: Overview of MCTS parallelization methods.
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former simulations’ outcomes and thereby depends on them, the playout compu-
tation has no such dependencies. Furthermore, the computation of playouts that
might include several hundred move decisions and a terminal reward computa-
tion, is generally assumed to be time consuming. Their independence, together
with their computational overhead makes playouts especially attractive subjects
for parallelization. We distinguish two types of Leaf-Parallelization:

Single Leaf Multiple Playouts (SLMP) was first proposed in [21] and is based
on computing the in-tree part of the MCTS search on a single master com-
putation entity only. After the expansion phase however all computation
entities will independently compute a playout from the search tree node just
expanded. The single master computation entity afterwards collects all play-
out rewards to continue with the update phase.

Multiple Leafs Multiple Playouts (MLMP) again divides the available compu-
tation entities into a single master entity and slave entities. As for SLMP,
the in-tree part is solely handled by the master. But instead of having all
slaves computing a playout from a single search tree node, the master del-
egates the playout computation to a single slave only, and asynchronously
starts another simulation at the root of the tree until its expansion step is
completed. Then again, the playout computation is delegated to another
slave. MLMP was first proposed in 2008 by Cazenave et al. [22]. In 2010,
Kato et al. [57] published further experiments with MLMP calling their im-
plementation client-server style parallel MCTS.

The independence of the playout computations with one another makes Leaf-
Parallelization attractive for distributed memory systems. In fact, all the data
that a slave needs to perform a playout computation is a game position and the
information about the player to move. On the other hand, the entire information
a slave might return to the master is the sequence of actions chosen, the terminal
reward and eventually the terminal position. Hence, at least for the game of Go,
the size of data is small and can be efficiently communicated by message passing
parallelization.

Root-Parallelization

While in all variants of Leaf-Parallelization, essentially a single MCTS search
takes place, Root-Parallelization is based on multiple, mostly independent MCTS
searches that are carried out in parallel. As depicted in Figure 4.1d, each CE
grows its own search tree representation in memory by conducting an almost
independent MCTS search. The searches are only almost independent, as the
statistics at near-root nodes are synchronized from time to time. The concrete set
of tree nodes that get synchronized as well as the particular frequency of synchro-
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nization are tunable parameters of the parallelization. Depending on the choice
of the parameter values, different names were given to the resulting actual par-
allelization, among them Fast-Tree-Parallelization and Slow-Tree-Parallelization.
Root-Parallelization was first proposed and investigated by Cazenave et al. [21]
where only statistics about moves available at the root node were synchronized.
Further variations were developed and investigated, e.g., in [24][13] and [9]. Like
Leaf-Parallelization, Root-Parallelization is well suited and actually developed for
message passing parallelization on distributed memory machines.

Among the above mentioned methods, Root-Parallelization is currently excelling
for distributed memory systems [9]. One drawback of this method is that no
effort is made at all to exploit the increased amount of memory available within
a cluster. Instead, all CNs try to keep a nearly identical copy of the search tree
representation. However, simply distributing the search tree across all cluster
nodes would result in very costly remote read/write operations, slowing down the
simulation dramatically [13].

In 2011, simultaneously and independent to our paper [45], Yoshizoe et al. [107]
published an MCTS parallelization that manages the sharing of a single search tree
representation on a distributed memory system. Both of us proposed a solution
based on transposition table driven work scheduling (TDS) [85]. In contrast to
us, Yoshizoe et al. developed a depth-first version of the UCT policy (df-UCT)
that reduces the update frequency of statistics associated to often visited tree
nodes. This is achieved by delaying and merging necessary backpropagations of
simulation results. They restrict their scalability experiments to simulation rates
achievable with artificial game trees and mention experiments regarding search
quality improvements with real games like Go as an important direction for future
work.

4.1.2 Parallelization for Accelerator Hardware

Focusing on more fine-grained parallelism, some attempts were made to move the
playout computation to accelerator hardware, in particular FPGAs and GPGPUs.
Concerning FPGAs we want to mention the work of Gao et al. [40] who presented
a 167 staged pipeline architecture that implements two consecutive completely
random move operations on a 9× 9 Go board, one by the black and the other by
the white player. This way, they were able to run 167 playouts in parallel and
achieved a remarkable number of 1.56M playouts per seconds on a Cyclone III
(EP3C120) FPGA from Altera running at 125 MHz. This is a speedup of about
15 over the current fastest CPU single core implementation of  Lukasz Lew’s Go
engine libEGO that was reported to achieve about 100,000 playouts/second. Gao
et al. used the playouts as an evaluation function with a traditional αβ search that
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was also implemented on the same FPGA device. As their playouts are completely
random, they only achieved a rather moderate overall playing strength.

In 2011, Rocki et al. [83][84] presented their Othello MCTS searcher for an NVIDIA
TESLA C2050 GPU. They proposed a hybridized Root-Parallelization and SLMP
Leaf-Parallelization. The GPU organizes a number of arithmetic logical units
(ALUs) in so called multiprocessors (MPs) that can compute a number of SIMD
threads in parallel. Following this special architecture, the authors propose to
perform one MCTS search on each of the MPs but to use the SIMD threads
computable at each MP to implement SLMP Leaf-Parallelization. Between the
MPs they use Root-Parallelization to synchronize the results of all distinct MCTS
searches. They call this GPU specific parallelization Block-Parallelization and
claim to achieve a performance comparable to a hundred of CPU cores with a
single GPU. Experiments were solely conducted in form of self-play experiments,
making a comparison with state-of-the-art Othello programs difficult.

4.1.3 General Techniques for Scalability Improvements

During the years of research on parallelizing MCTS, some techniques were discov-
ered that appear to generally lead to better scalability, almost independently of
the actual form of parallelization used. We will present two of the most popular
techniques in the following.

Virtual Losses

In [24], Chaslot et al. first observed substantial improvements in scalability by
a quite simple modification to the original UCT algorithm. While the original
algorithm exhibits a proper update phase in which all updates to tree node statis-
tics are performed, the idea of virtual losses is to update the simulation count of
tree nodes visited during a simulation already in the selection phase. The update
phase then solely handles the increment of the visited nodes’ reward accumulator.
Recall, that for the UCT in-tree policy πUCT, we compute the average reward
observed from simulating some state-action by dividing the total sum of rewards
by the number of simulations. Also, we defined the observed single simulation
rewards for each state-action pair to equal 1 for a win of the player to move and 0
for a win of its opponent. Hence, an increment of the simulation count only pro-
duces statistics equal to a simulation where the player to move loses. Chaslot et
al. called this effect a virtual loss, because, in fact, the statistics’ update relating
to the reward is only delayed, so that the virtual loss can still be updated to a real
win. The concept of virtual losses encounters the problem of having a potentially
large number of parallel simulations being guided along the very same path of the
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search tree by πUCT only because of delayed statistic updates. This is achieved
by slightly and temporarily penalizing moves for having been selected during an
ongoing parallel simulation.

Virtual Wins

Baudǐs and Gailly [9] observed further scalability improvements in their implemen-
tation of Root-Parallelization by assigning slightly different priors to the statistics
of tree nodes on different compute nodes. They hereby artificially diversify the
simulation guidance in the initial phase. The term virtual wins stems from the fact
that one chooses the priors as if several simulations had been computed already
that all led to a win.

4.2 Proposed Parallelization: Distributed-Tree-Parallelization

In this section, we present the central part of this thesis, our MCTS parallelization
for distributed memory systems. It combines several techniques from the related
work presented in Section 4.1, and furthermore, leverages concepts of data driven
parallelization for efficient sharing of a transposition table in distributed memory
systems [85][58]. Our extensive experiments, that are documented in Section 4.3,
show that our parallelization can scale up to 128 compute nodes and 2048 cores,
making it one of the best scaling parallelizations to date.

With our approach, we target modern HPC compute clusters with fast network
interconnect, where each compute node (CN) contains a number of many-core
CPUs. Looking for the best possible performance, we developed a hybrid paral-
lelization that is capable of exploiting shared memory based low latency commu-
nication on the compute nodes while resorting to message passing for inter node
communication. The use of compute clusters typically comes with large amounts
of distributed memory. Efficiently exploiting not only the vast compute resources
but also the entire memory available for improving the search quality was another
central objective of our work.

Looking at the experimental analysis of an MCTS parallelization’s scalability, we
have to decide for a good way of measuring scalability. We are convinced, the most
solid measure is the search quality improvement achieved with increasing compute
and memory resources. By an implementation of our parallelization in a computer
Go engine, we are able to quantify search quality with playing strength. Looking
at the number of simulations computable per time unit (simulation rate) as well,
we observe a non linear dependency of the simulation-rate to the search quality
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Figure 4.2: Finite state machine for distributed simulations (Worker FSM).

development. This supports our decision to focus on search quality rather than
restrict measurements to simulation rates, as it is sometimes seen in literature.

At a high level, our parallelization is an approach to effectively realize Tree-
Parallelization for distributed memory systems, while so long, Tree-Parallelization
was applicable to shared memory systems only. This imposes the need for real-
izing a single search tree representation in distributed memory and developing
an appropriate architecture that allows for low access times to this representa-
tion. We detail our parallelization and its implementation on a real system in the
subsequent sections.

4.2.1 Distributed Simulations

The key technique of our approach is based on the transposition table driven
scheduling (TDS) that was used with, e.g., αβ-search, or more precisely its variant
MTD(f) before [58]. We spread a single search tree representation among the local
memories of all CNs, moving computational tasks to the CNs that own the required
data. Therefore, we break simulations into work packages that can be computed on
different cores that not even need to be located on the same CN. Message passing is
used to guide simulations over CN boundaries, i.e., the only way of communication
used is by distinct messages that are explicitly sent to and received by remote
CNs. We overlap necessary communication with concurrently computing more
simulations than there are actual compute cores. This is a standard technique
that is generally known as latency hiding.

Figure 4.2 illustrates our distributed simulation process as a finite state machine.
The states represent work packages that make up the computational load. The
work packages were derived from the building blocks of MCTS simulations as
depicted in Figure 3.1. Dotted arrows in Figure 4.2 represent state transitions
that always happen at a single CN. Solid arrows indicate a possible movement
to other CNs and are annotated with the corresponding messages that have to
be sent. During the in-tree part of a simulation, several action selection steps
take place. Each of those steps, i.e., each application of πUCT, can be computed
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without the need to communicate with other CNs by storing the statistics about
all actions available in one state together in memory3. Between two consecutive
action selection steps, a simulation may move to another CN through a MOVE
message. The UPDATE message is sent to all CNs visited in the course of the
simulation as statistics need to be updated on all of them.

4.2.2 Tree Node Duplication and Synchronization

An obvious bottleneck when implementing distributed simulations is a massive
contention at memory locations that hold search tree statistics of near root nodes.
This is because nodes near the root of the tree are naturally more likely visited
by simulations compared to tree nodes at deeper levels. To address this imbal-
ance, we duplicate the representation of such frequently visited tree nodes on all
CNs as it is also done in the Root-Parallelization approaches. Duplicating and
occasionally synchronizing frequently visited tree nodes on all CNs greatly reduces
the average communication overhead of a single simulation and thereby speeds up
the overall average time required for its computation. Furthermore, it prevents
high congestion of single CNs that are visited by an above average number of
simulations.

The duplication of frequently visited near-root nodes entails the need for regular
synchronization of statistics stored with duplicated nodes. We therefore maintain
additional counters N∆

s,a and W∆
s,a next to the Ns,a and Ws,a that were introduced

in Algorithm BasicMCTS. N∆
s,a and W∆

s,a are used for accounting simulation visits
and rewards that still have to be communicated to remote MPI ranks. After
communicating them, the ∆-values are incorporated into the corresponding non-
∆ variables. Hence, at any time the actual real visit count for a state-action pair
(s, a) is obtained by N∆

s,a +Ns,a. As we assume that all variables corresponding to
children of the same tree node are stored together in memory, all those variables
are synchronized at the same time with a single MPI message in order to minimize
communication overhead.

We introduce the following four parameters to control the duplication and syn-
chronization of frequently visited search tree nodes:

• Ndup: The minimum number of simulations that must have passed a tree
node before it is eligible to be shared (i.e. duplicated).

• α: A factor to determine Nsync(s, a) = α(N∆
s,a +Ns,a) as the minimum value

required for at least one N∆
s,a to start the synchronization process for node s.

3Storing statistics about all actions available at one state together at subsequent memory locations is in general
an effective approach, as typical caching strategies assume linear memory access patterns. And in fact, the
UCT policy πUCT linearly accesses statistics of all actions available at a state.
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• Nmin
sync: A lower bound for Nsync.

• Nmax
sync : An upper bound for Nsync. Hence, we actually have Nsync(s, a) =

min(Nmax
sync ,max(Nmin

sync, α(N∆
s,a +Ns,a))).

Parameter α can be selected with the objective to ensure a uniform reduction
of the standard error of the tree node’s mean reward per synchronization and
to allow for less frequent synchronization of more settled node statistics. Let us
consider a tuple (s, a) ∈ S ×A of a node and an action that can be taken in node
s with its corresponding values of the number of simulations Ns,a that applied
action a in node s and the number of those simulations Ws,a ≤ Ns,a that lead
to a win. We can then compute the mean reward for simulations starting with
the transition (s, a) and the corresponding standard error by Equation 4.1 and
Equation 4.2 respectively.

µ(s, a) =
Ws,a

Ns,a

(4.1)

SEµ =
σ√
Ns,a

, (4.2)

with σ denoting the standard deviation. Let us denote the standard error of the
sample mean µ of a given state action pair (s, a) at the time of two consecutive
syncronization points t and t + 1 by SEt

µ and SEt+1
µ respectively. If we assume

σ to remain unchanged and write N∆
s,a for the number of simulations performed

between time t and t+ 1, we obtain the followig formulas for SEt
µ and SEt+1

µ :

SEt
µ =

σ√
N t
s,a

, (4.3)

SEt+1
µ =

σ√
N t+1
s,a

=
σ√

N t
s,a +N∆

s,a

(4.4)

We can then select a desired rate p ∈ [0, 1] of reduction of SEµ for each update
that yields SEt+1

µ ← p ·SEt
µ. Then, the following implications yield the maximum

amount of simulations N∆
s,a that can be performed without reducing SEt+1

µ to a
value lower than p · SEt

µ:
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p · SEt
µ ≤ SEt+1

µ

⇒ p√
N t
s,a

≤ 1√
N t
s,a +N∆

s,a

⇒ p2

N t
s,a

≤ 1

N t
s,a +N∆

s,a

⇒
N t
s,a +N∆

s,a

N t
s,a

≤ 1

p2

⇒ N∆
s,a ≤

N t
s,a

p2
−N t

s,a

⇒ N∆
s,a ≤ (

1

p2
− 1)N t

s,a

⇒ N∆
s,a ≤ αN t

s,a (4.5)

Hence, given a desired reduction rate p ∈ [0, 1] we have α = (1/p2) − 1 and
synchronization of node s will be triggered as soon as N∆

s,a ≥ Nsync(s, a) for some
a ∈ Γ(s).

4.2.3 Distributed Transposition Table

During computation, workers need access to MC-simulation statistics of the tree
nodes. As mentioned in Section 3.2.3, it is possible for some search domains that
equal states are reached through different paths motivating the use of transposition
tables. As transposition table we use a hash table H that is capable of storing
up to |H| nodes of the search tree representation. We assume the existence of a
hash-function h : S → N assigning a unique and equally distributed hash value to
each single state in the search space. One way for computing an index IH(s) into
H for a search tree node s ∈ S is given by:

IH(s) = h(s) mod |H|

In a manner similar to [36], we distribute H among M MPI ranks on a cluster
by storing for each rank i ∈ {0, . . . ,M − 1} a partial transposition table Hi with
|H|/M entries. An index to the distributed table is a tuple of a rank i and a local
index IHi to Hi. Both are computed as follows:

i(s) = (h(s)/(|H|/M)) mod M (4.6)

IHi
(s) = h(s) mod (|H|/M) (4.7)
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Typical time settings for actual game play limit the time for each player to make all
of his moves in a game. Among the obstacles towards actual game play with such
time limits is the efficient deletion of parts of the transposition table elements,
once a move was made and a new search run is to be started. In such cases,
only a single subtree below a direct root-child, the one corresponding to the move
that was actually made, must remain in the transposition table, while the other
elements are likely not needed any longer. An active deletion or marking of such
unneeded elements could easily end up in a lot of communication and might require
a substantial amount of time. Saving time for this task allows for using more time
with subsequent search runs.

We developed a method for efficient table lookup and insertion that does not
require an explicit element deletion phase between subsequent search runs and
efficiently implements an inherent locking mechanism for fast replacement of old
elements. Therefore, we use a time-stamp with every table element to track the
element’s last access times and override the least recently updated element among
the K upcoming indices in a linear probing manner, in case no free table entry
was found.

Procedure TableLookup on page 48 shows a pseudocode representation of the
table lookup operation that is used to find the actual table index, given a hash
value. The procedure consists of two parts: the first part (line 1–22) looks for
the best fitting index and the second part (line 23–43) updates the element’s
data and ensures that each element is only associated to a single hash value. In
case no matching element was found in the first part, an insert takes place at
the first free or the least recently updated table index, in case no free one is
found. In order to be overridden, an old element must not have been accessed
during the current search run. This is ensured by line 10 and in turn guarantees
that no data of elements can be deleted that might be accessed by some thread
in the current search run. In case we override an old element, we may need
exclusive access to this element in order to clear/delete the element’s data until it
provides valid information again. We declare the element’s time-stamp value 0 to
be a special lock-value. Line 31 shows, how to use an atomic compare-and-swap
operation (atomicCAS) with the lock-value to acquire exclusive access to a table
element. The lock is released in line 34 implicitly, when the current value of the
lookup counter, that is always greater than 1, is stored in the element’s time-
stamp variable. Note that in practical implementations, depending on the actual
compiler and processor used, it might be necessary to add a compiler and/or CPU
store memory barrier (also known as fence) right before line 34 to ensure all data
was written before the implicit lock is released.
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Procedure TableLookup

Data: An array T with size(T ) elements that makes up the transposition table. Each element T [i]
is a 2-tuple (h, a) consisting of a hash value h and a volatile integer a tracking the elements
last access time. For all i, T [i].a is initialized with 1, indicating an empty table element. A
global integer variable lookupCnt is incremented at each table lookup and thereby serves as
a clock. startTime holds the value of lookupCnt at the time the search run started.

input : A hash value h
output: A table-index i∗ and a return state r ∈ {FOUND,FULL,BUSY}

1 i∗ ← 0;
2 itmp ← 0;
3 atmp ← MAXINT;
4 i← h mod size(T );
5 for 10 times do
6 i← max(i, 1); // make sure index 0 remains unused

7 if T [i].a = 1 and atmp > 0 then
8 itmp ← i;
9 atmp ← 0;

10 else if T [i].a < startTime and T [i].a < atmp then // found a free element

11 itmp ← i;
12 atmp ← T [i].a;

13 end
14 if T [i].h = h and T [i].a > 1 then // found an existing element

15 i∗ ← i;
16 break;

17 end
18 i← (i+ 1) mod size(T );

19 end
20 i← T ∗;
21 if i = 0 then i← itmp;
22 if i = 0 then return FULL;

23 atomicIncrement(lookupCnt);
24 a← T [i].a;
25 while a ≤ startTime do
26 if a = 0 then
27 a← T [i].a; continue;
28 end
29 if i∗ 6= 0 then
30 atomicCAS (T [i].a, lookupCnt, a);
31 else if atomicCAS (T [i].a, 0, a) then // atomicCAS(mem,newval,oldval)

32 clear(T [i]);
33 T [i].h← h; // delete/clear old elements data

34 T [i].a← lookupCnt; // release lock

35 end
36 a← T [i].a;

37 end
38 if T [i].a > startTime and T [i].h = h then
39 T [i].a← lookupCnt;
40 Ti ← i;
41 return FOUND;

42 end
43 return BUSY; // another thread updated our element T [i]
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Network Link

IO (Core 1) Worker (Core 2)

Msg Input Buffer

Msg Output Buffer

Transfer Buffer In

Transfer Buffer Out

Worker (Core C)

Transfer Buffer In

Transfer Buffer Out

...
Workpackage 

Scheduler

Worker
FSM

Worker
FSM

1/Mth of 
Transposition 

Table

Cache 
for Remote

Transposition
Table Entries

CPU

Cache
Handler

Figure 4.3: Setup of an MPI rank on a CPU.

4.2.4 Implementation Details

We concentrate on homogeneous HPC systems with a fast, low-latency Infiniband
interconnect consisting of N compute nodes (CNs), each having P CPUs that in
turn each have C > 1 compute cores that share a CN’s entire memory. We assume
this is a model that fits modern HPC cluster systems. We use MPI for message
passing and assign one MPI rank, thus one instance of our program, to each CPU.
Hence, we will run M = N ·P program instances in parallel4. We devote one core
(IO) of each CPU to a single thread handling message passing and work package
distribution, while the remaining C − 1 cores (workers) of each CPU are bound
to worker threads. Figure 4.3 illustrates this setup of one MPI rank on a CPU.

The IO and worker cores communicate using ring-buffers (Transfer Buffer In/Out
in the figure) that reside in shared memory. The main loop running on the IO
core reads available messages containing work packages from the network link
and stores a reference to the according memory location in a buffer. Afterwards,
a work package scheduler distributes the received packages among the workers’
ring-buffers, balancing the work load. Workers poll the transfer buffers and start
computation once they find a package and, if required, send response messages
back to the IO core using the corresponding buffers. In turn, the IO core period-

4In practice, assigning one MPI rank to each CPU is important on most systems to allow for faster and more
homogeneous memory access times as the contention at, e.g., QPI links can be reduced significantly.

49



4 Parallel Monte-Carlo Tree Search

ically collects messages from the workers’ ring-buffers and forwards them to the
network link appropriately5.

Although ring buffers between dedicated communication partners can be imple-
mented lock free and thus allow for efficient shared memory communication, in
our experiments it turned out that, allowing workers to look for work packages not
only in their own but also in other workers queues, improves the system’s overall
work load, even though the ring-buffers require explicit locking in this case.

All worker cores need access to the part of the distributed transposition table
(cf. Section 4.2.3) that is associated to the MPI rank, represented by the upper
cylinder and corresponding arrows on the right in Figure 4.3. The duplicated
statistics of frequently visited tree nodes (cf. Section 4.2.2) are stored in a second
local transposition table, denoted with Cache in the figure. The transposition
table cache is updated not only by workers but also by the IO core. The IO core
receives the data of new transposition table entries from remote ranks and takes
entries from the local transposition table to send them to remote ranks for their
duplication. Those tasks are handled by the cache handler that resides on the IO
core.

During search, a number of simulations are computed in parallel. We denote
this number with Spar. Each of Spar simulations running in parallel suffers loss
of information represented by the results of the Spar − 1 other simulations that
would be available in a sequential UCT version. Obviously this impairs the search
quality [89] and urges us to keep Spar as small as possible.

In total the algorithm requires us to determine:

• An overload factor O to compute the number of simulations that run in par-
allel on M MPI ranks using C − 1 worker cores each: Spar := (C − 1)MO.
It should be sufficiently large to effectively overlap communication with ad-
dition simulation computations.

• A policy for duplication and then also synchronization of frequently visited
tree nodes.

While the value of the overload factor O can be determined empirically, we discuss
and propose a policy for tree node duplication and synchronization in Section 4.2.2.
Note that Distributed-Tree-Parallelization may be configured to behave compara-
bly to Root-Parallelization by sharing near-root nodes immediately. On the other

5For practical implementations, care must be taken to pass around references to corresponding memory locations
rather then copying entire messages whenever possible. We recommend the allocation of a large memory buffer
using the MPI function MPI Alloc mem at program start and handling the memory management within the
user application, as frequent allocation and freeing of dynamic memory can easily lead to unpredictable, highly
inhomogeneous processing times.
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extreme, Distributed-Tree-Parallelization behaves like Tree-Parallelization if tree
nodes are never duplicated.

The search process begins by sharing the root node among all MPI ranks. Then,
each rank starts Spar/M simulations. The data structure representing a simulation
consists in principle only of the state-action stack containing all states visited and
actions taken during simulation. Together with each state, we store the MPI rank
where the action selection took place. The rank information allows for determining
the destination ranks for necessary UPDATE messages. For UPDATE messages
we additionally include the playout’s reward and in our Go specific implementation
also some further information about the terminal position to support some domain
specific MC-heuristics.

4.2.5 Load Balancing

We assume the playout work packages to make up by far the largest portion of
the overall computational load that comes along with each single simulation. By
design of the algorithm, these work packages are distributed randomly across all
worker MPI ranks. This, however, does not ensure that work is well balanced at
any time but only on average. Even further, the computation of a playout is not
strictly bound to a fixed MPI rank as the transposition table does not need to be
accessed. We make use of this absence of data dependency and forward playout
computations to other ranks in case we notice unusual high workload on the rank
that originally had to compute it. To perceive unusual high workload at a specific
rank, we look at the number of MOVE messages that reside in the rank’s message
buffers. Being aware that in total at most Spar simulations are running in parallel,
we expect to find an average number of (Spar/M) MOVE messages. We define a
rank’s workload to be unusual high in case we find more than (Spar/M) ·K with
K > 1 MOVE messages in the rank’s message buffers. Playout work packages
are then forwarded to other, randomly chosen MPI ranks that might of course
themselves forward the work again until a rank with appropriate workload was
found. Choosing K > 1 ensures that such CNs exist. In our experiments we
achieved satisfying results with K = 1.2.

Taking the distributed simulations, the duplication and synchronization of fre-
quently visited tree nodes and the playout redistribution for load balancing to-
gether, our approach effectively combines all major parallelization techniques pre-
sented in Section 4.1.1. Depicting our approach in the manner we did it for the
other MCTS parallelizations above, we obtain Figure 4.4.
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synchronize

distributed

Figure 4.4: An illustration of our Distributed-Tree-Parallelization. Frequently visited nodes
near the root of the tree are duplicated on each compute node. Those shared tree
nodes are frequently synchronized. By far most of the tree nodes, that are less fre-
quently visited, are stored in a distributed transposition table. Computational tasks
are performed were the corresponding data is located. Consequently, simulations
become distributed as well and may need to jump between different compute nodes
during computation. Different colors represent computations performed by different
compute nodes.
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4.2.6 Broadcast Nodes

A bottleneck in the parallelization approach as described so far, is the need for reg-
ular all-to-all communications to synchronize the statistics of duplicated near-root
nodes. As current MPI libraries still lack efficient, asynchronous many-cast op-
erations, we add additional CNs to help spreading synchronization messages6. In
the remainder of this thesis, we denote the MPI ranks that handle the tree search
with search ranks and call those helping with shared tree node synchronization
broadcast ranks. We empirically determined a good ratio to be one broadcast
rank for every four search ranks. Hence, each search rank has a dedicated broad-
cast rank to send all synchronization messages to. In turn a search rank will also
receive synchronization messages of the originating search ranks only via this dedi-
cated broadcast partner. The broadcast ranks themselves synchronize by all-to-all
communication.

The design choice of using broadcast ranks even allows for merging synchroniza-
tion messages originating from different search ranks that affect the same tree
node and hence, greatly helps to reduce network traffic and takes over additional
work load from the search ranks. To further support this effect, messages are ar-
tificially delayed by the broadcast ranks to increase the probability that messages
containing information for equal tree nodes can be merged. This delay and merge
technique considerably reduces the number of synchronization messages that have
to be received and processed by each single search rank. Otherwise, the number of
those messages might double with each doubling of the search ranks and thereby
limit the scalability of the overall algorithm.

We determined the broadcast to search ranks ratio (1:4) empirically for 16 search
ranks. For other numbers of search ranks, different ratios might yield better per-
formance. Furthermore, our broadcast rank’s implementation is single threaded.
Hence, further performance improvements might be obtainable by handling work
packages like synchronization message duplication and merging on additional com-
pute cores. In summary, our implementation of broadcast ranks is rather a proof
of concept than being optimal.

The use of an Infiniband interconnect allows for so called RDMA (Remote-Direct-
Memory-Access) communication, that helps shifting communication related work
almost entirely to the corresponding Infiniband hardware. This technique not only
provides very low latencies (less than 1 microsecond) but simplifies overlapping of
communication with computation remarkably. A practical drawback of RDMA,
however, is the need of preallocated receive buffers at each MPI rank for each of

6The use of blocking many-cast operations like MPI Allreduce, that might be used for Root-Parallelization,
is inviable for our approach, because it would block the IO core. Blocking an IO core would immediately
lead to blocking distributed simulations processing and thereby might harm the whole system’s performance
considerably.
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the rank’s potential communication partners (peers). Even further, these buffers
need to be polled by the CPU in order to recognize the completion of asynchronous
message receive operations. Hence, in terms of memory requirements and polling
time (and thus CPU time), the use of RDMA in combination with all-to-all com-
munication does not scale to arbitrarily sized clusters. Actually, OpenMPI limits
the number of RDMA peers per default to only 16 per MPI rank but allows for
adjusting this number.

To address this issue, we introduce a communication pattern for the broadcast
ranks that makes each broadcast rank communicate with a limited number of L
other broadcast ranks in addition to its associated search ranks. The pattern mini-
mizes the number of hops and targets at uniformly distributing the communication
and work load among the broadcast ranks. Recalling that the number of search
ranks is denoted by M , and having B = M/4 broadcast ranks, we determine
positive numbers k, n and m ∈ N that fulfill the following two conditions:

kn ·m = B (4.8)

n+m− 1 ≤ L. (4.9)

In case more than one realization of k, n and m can be found, we are interested
in the one minimizing k + n. We can then define our logical broadcast network
as m connected k-ary n-cube networks, where each node belongs to one cube and
has links to its counterparts in the m − 1 remaining cubes in addition to n links
to the neighboring cube nodes (one in each dimension). We label the broadcast
ranks by tuples (a, b) with a ∈ {0, . . . ,m − 1} and b ∈ {0, . . . , k − 1}n. Here, a
determines the k-ary n-cube the rank is part of while (b0, . . . , bn−1) represents the
index of the rank in the respective cube. Inside the cube we allow rank (a, b) the
forwarding of messages to its successors (b0, . . . , (bi + 1) mod k, . . . , bn−1) in each
dimension i ∈ {0, . . . , n−1}. In addition, each rank (a, b) can forward messages to
its respective counterparts in the other cubes, i.e., to all ranks (x, b) with x 6= a,
resulting in a total of n+m−1 outgoing links for each broadcast rank. The number
of incoming links is equal, although the cube related ingoing and outgoing links
differ for k ≥ 3. Procedure Broadcast shows in pseudo-code how a broadcast is
performed in the network.

Figure 4.5 depicts an example of the logical interconnect for 16 compute nodes
and a peer limit of L = 6. Figures 4.5b to 4.5d show the 3-hop broadcast op-
eration that can logically be split into a 2-hop binary 2-cube (i.e. hypercube)
broadcast operation and 22 associated clique communications between the sin-
gle 2-cube nodes and their respective counterparts. The maximum number of
hops needed for each message is equal to n(k − 1) + 1 while each broadcast rank
receives messages from at most L other broadcast ranks as desired.
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Procedure Broadcast((a∗,b∗), dimension)

Data: k, n,m ∈ N define m connected k-ary n-cubes. Nodes are indexed by tuples
(a, b0b1 . . . bn−1) ∈ {0, . . . ,m− 1} × {0, . . . , k − 1}n. dimension ∈ {0, . . . , n− 1}. (a, b) is
the current node index and (a∗, b∗) denotes the index of the node that initiated the
broadcast.

input : Index (a∗, b∗) of the node that initiated the broadcast and dimension.

1 if (a, b) = (a∗, b∗) then
2 dimension← n;
3 end

4 for 0 ≤ x < m and x 6= a do
5 forward message to node (x, b);
6 end

7 for 0 ≤ i < dimension do
8 if ((bi + 1) mod k) 6= b∗i then
9 new dimension← i;

10 if ((bi + 2) mod k) 6= b∗i then
11 new dimension← i+ 1;
12 end
13 forward message to (a, b0 . . . ((bi + 1) mod k) . . . bn−1) and
14 call Broadcast ((a∗, b∗),new dimension) there on message arrival;

15 end

16 end

(a) Initial (b) Hop 1 (c) Hop 2 (d) Hop 3

Figure 4.5: Example 3-hop broadcast operation with 16 broadcast ranks and a maximum of 6
peers per rank, giving (k, n,m) = (2, 2, 4). The gray box marks the 4 ranks that are
used in the binary 2-cube (i.e. hypercube) communication.
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4.3 Experimental Results

In this chapter, we present the experimental setup and results achieved with our
Go engine Gomorra that incorporates the Distributed-Tree-Parallelization intro-
duced above. We start with experimental results concerning the scalability of
our parallelization in terms of search quality that were produced by having Go-
morra play against itself and the open-source Go engines FUEGO7 version 1.1
and Pachi8 version 10.00 (Satsugen). Then we present more detailed insights by
showing the development of achieved simulation rates, measured workloads and
network bandwidth usage for varying numbers of MPI ranks. Whenever provided,
confidence intervals are given with a 95% confidence level. In addition, we analyze
the impact of increasing numbers of parallel simulations and MPI ranks on the
playing strength separately, to provide a more complete picture of the algorithms
behavior. Furthermore, we measured the runtime of certain OpenMPI library calls
for varying numbers of CNs in order to estimate the systems behavior in terms of
scalability when using even more compute resources. We end up with an empiri-
cal analysis of the frequencies and overheads of the distinct work packages in the
sequential and distributed program version and measured the bandwidth require-
ments imposed by different parts of the parallel algorithm in order to determine
possible future bottlenecks.

4.3.1 Setup

Our computer Go engine Gomorra implements several state of the art enhance-
ments over basic UCT and proved its playing strength previously in several games
against the currently strongest computer Go programs. In our experiments dif-
ferent instances of Gomorra play against each other on a 19 × 19 board size,
giving each player 10 minutes to make all moves in a game if not stated otherwise.
The distribution of the time used per move computation varies among different
phases of the game. Gomorra’s time management is loosely based on [52]. We
choose the following values for the Distributed-Tree-Parallelization parameters:
Ndup := 8192, Nmin

sync := 8, Nmax
sync := 16, α := 0.02 and O := 5. Note that the

optimal values will depend on parameters of the compute resources such as net-
work latency and bandwidth as well as on the ratio of processor speed to work
package size. Although reducing Ndup decreases the communication overhead for
single simulations because less CN hops take place, the overhead for synchroniz-
ing shared nodes statistics increases because more nodes are shared. However, few
hops per simulation allow for keeping O small. Furthermore, lower values of Nmin

sync

7The open source Go playing program FUEGO is available online: http://fuego.sourceforge.net/
8The open source Go playing program Pachi is available online: http://pachi.or.cz/

56



4.3 Experimental Results

Table 4.1: The actual numbers m, n and k used for the m-connected k-ary n-cube logical broad-
cast network in the experiments.

bc-ranks m k n

1 1 1 1

2 2 1 1

4 4 1 1

8 8 1 1

16 8 2 1

32 8 2 2

64 8 2 3

and Nmax
sync lead to increased network traffic as more synchronization messages are

sent.

For the broadcast operations performed between the broadcast nodes, Table 4.1
shows the configuration parameters of the logical communication network for all
numbers of broadcast ranks (bc-ranks) used during our experiments. We chose
this values with the objective to keep the number of communicating peers for each
broadcast rank below 16 while minimizing the number of required hops for each
broadcast operation9. As each broadcast rank communicates with up to 4 search
ranks as explained in Section 4.2.6, 12 peers remain for inter-broadcast nodes
communication. Hence, it must always hold that n+m− 1 ≤ 12.

For our experiments we use up to 160 CNs of the OCuLUS cluster10, each one
equipped with 2 Intel Xeon E5-2670 CPUs (16 cores in total) running at 2.6 GHz
and 64 GByte of main memory. The CNs are connected by a 4xQDR Infiniband
network. We use OpenMPI (version 1.6.4) for message passing.

4.3.2 Performance and Scalability

In this section we examine our parallelization’s overall performance characteristics
by having Gomorra play games against itself as well as against the open-source
Go programs FUEGO and Pachi with varying numbers of compute nodes. Like
Gomorra, FUEGO and Pachi are MCTS based Go programs. Pachi was configured
to play on a single CN using 16 cores with identical time restrictions as Gomorra.
With this configuration, Pachi computed about 30,000 simulations per second on
the empty 19 × 19 board. As FUEGO is substantially weaker than PACHI, we
relieved it from the time restrictions and configured it to compute a large constant

9OpenMPI version 1.6 recommends 16 as the maximum number of peers to use for eager RDMA communication.
10The system specification of the OCuLUS cluster is available online: http://pc2.de/
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Figure 4.6: Evaluation of Gomorra’s playing strength when playing against itself on a single
compute node.

amount of 250,000 simulations per move decision. We hereby leverage FUEGO’s
playing strength to be comparable to the strength of Gomorra and Pachi.

The most important measure for the performance of a parallel MCTS algorithm
and its scalability is the development of playing strength with an increasing num-
ber of CNs. We measured the playing strength in ELO[34]. A win rate of p ∈ (0, 1)
of one program instance over the other, translates to a relative ELO value of
log10(p/(1 − p)) · 400. Figure 4.6 shows this development of playing strength for
the sequential version of Gomorra when playing with varying number of simu-
lations per move. Figure 4.7 shows the according graph for the parallel version
when using varying numbers of CNs. All games played for these figures were
games against Gomorra itself. The reference configuration for the sequential ver-
sion computed a fixed number of 10,240 simulations per move. The reference
configuration for the parallel version used 8(+2) CNs. Here, we write 8(+2) for 8
search CNs (i.e. 16 search ranks) and 2 broadcast CNs (i.e. 4 broadcast ranks).
As we can see, the sequential version can improve by more than 1000 ELO from 6
doublings of the number of simulations performed per move whereas the parallel
version improves by about 700 ELO from 6 doublings of the number of CNs. In
order to relate both curves and to understand why the parallel version does not
also improve by more than 1000 ELO, we first want to know if 6 doublings of CNs

58



4.3 Experimental Results

-600

-500

-400

-300

-200

-100

 0

 100

 200

 300

 400

1
(+1)

2
(+1)

4
(+1)

8
(+2)

16
(+4)

32
(+8)

64
(+16)

128
(+32)

R
el

at
iv

e 
E

LO

Number of compute nodes (+ broadcast nodes)

Figure 4.7: Evaluation of Gomorra’s playing strength when playing against itself using Distri-
buted-Tree-Parallelization for varying numbers of compute nodes.

also results in 6 doublings of the number of simulations that are computed for
each move decision. Therefore, we look at the simulation rate, i.e., the number of
simulations that can be computed per time unit for varying numbers of CNs.

Figure 4.8 shows the scalability of the simulation rate and Figure 4.9 the develop-
ment of the average workload measured at the worker cores. Both diagrams show
4 curves for measurements at different phases of the game: At moves number 10,
50, 100 and 150. We plot curves for different game phases, because the playouts
become shorter in later game phases and this impacts the distribution of compu-
tational load among the different work packages of each single simulation. We can
see that the number of simulations scales uniformly for up to 32(+8) CNs and ob-
serve a slightly degraded scalability for more nodes. Figure 4.9 in contrast shows
a more remarkable drop of measured workloads when using more than 32(+8)
CNs. This observation also matches the reduction of playing strength scalability
observed in Figure 4.7.

Observing decreasing workloads leads to the assumption that either the distribu-
tion of work packages or the synchronization of shared tree nodes or both becomes
more challenging with increasing number of CNs. In order to explain the observed
numbers, we examine the actual communication related requirements in terms of
used bandwidth and computational overhead.
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Figure 4.8: Scalability of simulation rate with increasing number of CNs at different game
phases.

Figure 4.10 shows the average bandwidth usage measured on a worker MPI rank
for outgoing messages. The corresponding measures for broadcast ranks are shown
in Figure 4.11. In both cases, the required bandwidth remains well below the
available bandwidth for any configuration. Using 4xQDR Infiniband as in our
case, the theoretically available bandwidth per CN is about 32 Gbit/s. Recall that
each CN is used by two MPI ranks, hence the total amount of bandwidth available
per MPI rank is about 16 Gbit/s. Accordingly, the bandwidth requirements stay
well below their limits.

In order to estimate the computational overhead related to communication on
worker and broadcast CNs, we measure the average message loop iteration time,
as most of the communication related computation time is located in this loop.
In fact, we assigned a whole core solely for running this loop. Also computations
performed by the MPI library are bound to this core and hence, will inherently be
included in our measurements. Some of the communication related work, however,
is not included as some parts, such as the composition of messages, were shifted
to the worker cores.

Figure 4.12 shows the aforementioned measurements of the main message loop’s
average turnaround time on the worker CNs with varying number of CNs. During
each iteration, the main message loop calls the MPI function MPI Testsome once
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Figure 4.9: Average workload at worker cores with increasing number of CNs at different game
phases.

in order to get informed about newly received messages and about the comple-
tion of pending asynchronous send operations. In addition it collects all messages
supplied through the worker cores’ transfer buffers (cf. Figure 4.3) and asyn-
chronously sends them to the corresponding destination ranks. Furthermore all
received simulation related messages are forwarded to the corresponding workers’
transfer buffers. Additionally, incoming duplication and synchronization messages
for shared tree nodes are immediately processed and corresponding synchroniza-
tion messages are asynchronously sent to the MPI rank’s associated broadcast
rank, represented by the cache handler in Figure 4.3. Figure 4.12 contains an
additional curve for the average time spend inside the MPI Testsome routine, that
consumes by far most of the time. This stems from the fact that OpenMPI uses
the call to MPI Testsome not only to poll message buffers to recognize completed
RDMA communications but also for other library internal work. We can see that
MPI Testsome is responsible for steadily increasing turnaround times of the main
communication loop with increasing numbers of CNs. This is likely the case be-
cause RDMA communication requires the MPI library on each rank to provide a
number of receive buffers for each peer that regularly sends messages to this rank,
and to poll some memory locations associated to those buffers in order to recognize
the completion of incoming messages. OpenMPI allows for restricting the use of
RDMA communication to a limited number of peers to bound the polling time and
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Figure 4.10: Average outgoing bandwidth usage at search ranks with varying numbers of com-
puter nodes.

the memory consumption for the receive buffers. However, limiting this number
comes with a significant increase of the communication latency and the protocol
for non-RDMA communications might require a CPU involvement a number of
times in the course of each single message transfer. This in turn impairs the over-
lapping of communication with computation, as communication can only progress
when we explicitly assign execution time to the MPI library (e.g. by a call to
MPI Testsome). Our experiments showed that the aforementioned drawbacks of
partly non-RDMA communication heavily outweigh the increasing polling time
and memory consumptions when using RDMA for communicating with all peers.
Obviously, for even larger systems the use of RDMA communication has to be
restricted.

It is important to understand how valuable a number of parallel simulations are
in comparison to an equal number of sequentially computed simulations. As our
approach allows for running an arbitrary number of simulations in parallel on a
given number of cores, we measured the relative differences in playing strength
when playing with Gomorra using varying numbers of parallel simulations against
a version of Gomorra that always uses the same degree of parallelism, i.e the
same number of parallel simulations. Precisely, we configured Gomorra to make
exactly 10 simulations in parallel at a time as the reference version and made
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Figure 4.11: Average outgoing bandwidth usage at broadcast ranks with varying numbers of
computer nodes.

it play against versions of Gomorra that made exactly 20, 40, 80, 160, 320, 640
and 1280 simulations in parallel. For all pairings, we played 1000 games where
each instance of Gomorra had to make exactly 1280, 2560, 5120, 10240, 20480,
40960 and 81920 simulations per move. The results are shown in Figure 4.15.
We observe the expected decrease in playing strength for increasing degrees of
parallelism and equal number of simulations. Somewhat less intuitive is the fact
that high degrees of parallelism do not impair the search quality a lot for lower
numbers of simulations per move. In fact, this is likely an effect of Progressive
Widening (cf. Section 3.3.3), that initially restricts the search to only a very few
moves following a heuristic move prediction. Hence, for low numbers of simulations
per move, we have limited ability for making heavily wrong decisions. We can also
see that, at the long end, the search quality impairing becomes less significant the
more simulations are performed per move in relation to the number of simulations
that are computed in parallel. Similar experiments were already conducted by
Richard Segal in his paper about experiments with the Go program FUEGO
regarding the scalability of parallel MCTS [89] by simulating Tree-Parallelization
for very large shared memory machines. Segals experiments show a comparable
development of the measured relative strength’s with longer thinking times, i.e.,
for higher numbers of simulations performed per move. Hence, it appears to be the
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Figure 4.12: Time requirement of MPI Testsome in comparison with the entire message main
loop on search ranks.

case that the impairing due to higher degrees of parallelism continuously decreases
with longer thinking times and likely becomes almost negligible.

Finally, in order to make sure that the scalability of our parallelization in terms of
playing strength is not restricted to self play experiments, we measured the play-
ing strength development with varying numbers of CNs against the open-source
Go engines FUEGO and Pachi. Figure 4.13 shows the results for FUEGO. Also
against FUEGO we measured a significant improvement in playing strength when
using more CNs for up to 32(+8) CNs. However, gaining about 400 Elo, the
improvement is considerably less than in self-play where we achieved more than
700 Elo (see Figure 4.7). Improvements over modified versions of the same Go
program are known to be generally better than improvements over other Go pro-
grams. Effects comparable to our measurements were also observed and published
by, e.g., [9]. Even further, we see that the drop of workload and the degrading
simulation rate scalability leads to a more severe impairing for 64(+16) CNs and
more. We assume this impairing that actually leads to a drop of playing strength
for large systems, originates in higher ramp-up times for non-self-play games. In
self-play games, it is likely that both program instances are searching most of
the time in the same portion of the search space as both instances use, e.g., the
same heuristics and playout policies. This increases the chance of being able to
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Figure 4.13: Evaluation of Gomorra’s playing strength when playing against the open-source
Go program FUEGO.

reuse parts of the transposition table content of previous search runs and thereby
leads to reduced ramp-up times. This is especially true in case the root node was
already duplicated as all search ranks can then immediately start simulations.
Figure 4.14 shows the corresponding results for Pachi. Also here, Gomorra gains
playing strength for up to 32(+8) CNs and shows a slight drop when using more
CNs.

To get an idea about the advantage our parallelization has from spreading a single
search tree representation over doing rather independent searches on each rank
but sharing near root nodes (i.e. Root-Parallelization), we configured Gomorra
to use exactly the same way of sharing and synchronizing of near root nodes but
building up otherwise independent search tree representations on each rank. The
results are shown in Figure 4.16 for self-play experiments and in Figure 4.17 for
experiments with FUEGO11. Again, the improvement by the use of more CNs is
lower when playing against FUEGO than in self-play. But even more we can see a
rather big drop of playing strength when compared to our proposed parallelization
Distributed-Tree-Parallelization. Mind that we run two MPI ranks on each CN,
explaining the different measurements already for a single CN. This should not be

11Note that these experiments were conducted with an older version of Distributed-Tree-Parallelization that were
given only 5 min per game (instead of 10 min), explaining a generally lower playing strength compared to the
results presented in Figure 4.13
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Figure 4.14: Evaluation of Gomorra’s playing strength when playing against the open-source
Go program Pachi.

understood to be a fair comparison of Distributed-Tree-Parallelization and Root-
Parallelization, but should give insights about the importance of sharing the tree
in our approach. Actually others, in particular [9] were able to achieve slightly
better scaling with Root-Parallelization than we did. Here it is worth to mention
that they explicitly tried to have the distinct CNs search in different regions of
the tree, e.g., by assigning different priors to the tree nodes on different CNs, a
technique called virtual wins in [9] (cf. Section 4.1.3). This makes sense for Root-
Parallelization as it prevents having all nodes recreate almost the same search
tree representation. Recall that in Root-Parallelization each CN establishes its
own, rather independent search tree representation. For Distributed-Tree-Paral-
lelization, the effect of virtual wins however contradicts our objective to keep the
shared tree nodes as equal as possible because they represent a part of the single
one shared search tree representation. Hence, observing slightly worse scaling
with our Root-Parallelization version than others achieved does not contradict
our expectations.

Basically we might say that Root-Parallelization as implemented and advocated
by, e.g., [9] is more targeting at jumping out of or preventing to get stuck in local
optima while our approach is targeting at increasing the search depth. Assuming
this holds true, both parallelization methods are complementary to a certain de-
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Figure 4.16: Selfplay strength scalability of Root-Parallelization
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Figure 4.17: Comparing Root-Parallelization and Distributed-Tree-Parallelization playing
against Fuego

gree and it might be valuable to combine both approaches by, e.g., build clusters
of CNs that use Distributed-Tree-Parallelization internally while using some form
of root parallelization between cluster boundaries.

4.3.3 Overhead Distributions

In this section, we present and discuss experimental results concerning the over-
heads of the different work packages in terms of computation time and frequency
of occurrence. As a reference point, Figure 4.18 shows the average absolute com-
putation time that is spent in the different work packages select, playout, expand
and backup as they were defined in section 4.2.1, and different phases of a game,
when Gomorra runs on a single core performing 10k simulations per move. In the
diagram, the time requirements of the different work packages are stacked. Hence,
the total amount of time spend on average for the first move is about 9.5 seconds
and about 5.2 seconds for move 300. This drop in time makes completely sense,
as the length of playouts, and thereby the required time for their computation,
decreases to the end of the game. As the diagram clearly shows, the computation
of the playouts makes up by far the largest portion of the overall computation
time. An irregularity can be seen in the curve of the work package select. Here we
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Figure 4.18: Distribution of computation time overheads in sequential version

see a huge increase of time requirement around move 200. This is due to a special
behavior of Gomorra not to use Progressive Widening (PW, see section 3.3.3) af-
ter move 200. Not using PW results in directly considering all available moves at
each tree node and thus makes the move selection step naturally more time con-
suming. The main reason for not using PW in late game phases is the fact that
our move prediction system, that is the base for Progressive Widening, is trained
on games that were foremost played by strong human player using Japanese rules.
In territory based scoring, placing a stone on an intersection between the borders
of the players’ areas can be neutral (i.e. does not give points to either player).
Such moves are therefore rarely played if ever. Those intersections are also called
Dame. As a consequence, a move predictor that has been trained on games that
used territory scoring, does not prioritize such moves. As most professional games
are played with territory scoring, we trained our move predictor mostly with games
that use territory scoring. However, filling Dames is extremely important in close
endgames when using area scoring, which is typically used in Computer Go. With
area scoring, filling a dame equals one point.

Figure 4.19 shows the average absolute time requirements for essentially the same
work packages when running Gomorra in parallel on 16(+4) compute nodes, hence
16 worker nodes and 4 associated broadcast nodes. As each CN is equipped with
2 CPUs we actually run 32(+8) MPI ranks. This time, we configured Gomorra
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Figure 4.19: Distribution of computation time overheads in distributed version

to use a maximum of 5 minutes per game to play all its moves applying a time
management as proposed in [52]. The stacked curves now have a bell shape. This
is a side effect of the time management that assigns more time to the mid-game
phase. Also, because of the time management, the increased amount of time spend
in the selection package from move 200 onwards does not lead to an increased
overall time requirement but in fact reduces the number of simulations performed.
In addition to the work packages we examined with the sequential version of
Gomorra (cf. Figure 4.18), we also explicitly plotted the time requirement for
the heuristics’ computation that forms the input for Progressive Widening and
Progressive Bias. The time for the heuristics’ computation was included in the
selection step before. We can observe an almost identical relative distribution of
computation time among the work packages as already seen with the sequential
version of Gomorra. In the parallel version, we must also look at the overhead
generated by the need of incorporating incoming updates of shared node statistics,
denoted as BC update in the diagram. As we can see, these additional costs are
negligible when using 16(+4) CNs.

Apart of looking at the absolute time requirements of the distinct work packages,
Figure 4.20 gives insights about the occurrence frequencies of the work packages.
Here we can see that the computation of heuristics required by PW and PB, that
takes an considerable portion of the overall processing time, actually occurs rarely.
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About the same is the case for playouts. In fact, most often we handle work related
to the select and backup step. We can relate the data underlying Figure 4.19 and
Figure 4.20 to plot the average amount of time spent on the computation of a
single package of the distinct kinds of work. The result is plotted in Figure 4.21
and, not surprisingly, shows a very unbalanced distribution of processing times
for single work packages. Note that in Figure 4.21, the time axis is in log-scale in
contrast to the figures before.

As already mentioned in section 4.2.5, this imbalance can significantly hurt the
balance distribution of computational load. A typical simulation will have the
following sequence of work packages:

1. A number of select steps that will be computed at different CNs

2. Occasionally a heuristic computation

3. A playout computation

4. One update work package for each CN visited along the way

As according to the diagrams discussed above, by far most of the time is spend
during the heuristic and playout step, it is not unlikely that an MPI rank gets
entirely occupied with the treatment of a number of those work packages. During
this time, the rank becomes blocked for other work and might become a sink for
all simulation related messages in the system. In section 4.2.5 we presented a
mechanism that prevents this scenario by redistributing the playout computation
as needed.

4.3.4 Effect of Parameters

We conducted further experiments to analyze the impact of UCT-Treesplit’s pa-
rameters Ndup, Nmin

sync and Nmax
sync on the playing strength. We took the parameter

settings used for the experiments presented above (Ndup := 8192, Nmin
sync := 8,

Nmax
sync := 16, α := 0.02 and O := 5) as the reference point and empirically ana-

lyzed the effect of changing a single parameter. All experimental results presented
below were obtained from games between Gomorra using 32(+8) CNs and Pachi.
As in the experiments presented above, each program had 10 minutes to make all
its moves in a game.

Figure 4.22 shows the development of playing strength for varying values of Ndup.
We observe a bell-shaped curve. Low values of Ndup result in larger portions of
the tree that get duplicated. This results in more statistics that are less accurate
due to delayed synchronization. For very high values of Ndup it happens that
frequently visited tree nodes that are not yet duplicated lead to high contention
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Figure 4.20: Distribution of work package occurrence in distributed version
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Figure 4.21: Distribution of average work package processing time in distributed version
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Figure 4.22: Evaluation of Gomorra’s playing strength when playing against Pachi using Dis-
tributed-Tree-Parallelization and varying values for parameter Ndup.

on single CNs, leading in turn to severe load imbalances and thereby to reduced
simulation rates.

The development of playing strength for varying values of the parameters Nmin
sync

and Nmax
sync is depicted in Figure 4.23. While changing the value of Nmin

sync as shown on
the x-axis, we set Nmax

sync = 2Nmin
sync. We see that a reduction of the synchronization

rate by increasing the value of Nmax
sync leads to reduced playing strength. This

makes sense as statistics become less accurate when increasing synchronization
times. Mind that network traffic increases when synchronizing more frequently,
i.e., for low values of Nmin

sync and Nmax
sync .

4.3.5 Discussion of the Comparison of MCTS Parallelizations

A fair comparison of different MCTS parallelizations is challenging, if possible at
all. The performance of different parallelization approaches depends on the actual
hardware platform used, the specific search domain and of course the many specific
implementation details that are often not presented in detail in publications.

Looking at message passing approaches, solely using a different MPI version of
the same distributor might already have a severe impact on the performance of
a single parallelization approach. We therefore restricted our experiments to a
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Figure 4.23: Evaluation of Gomorra’s playing strength when playing against Pachi using Dis-
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comparison with one form of Root-Parallelization in order to get an idea of the
gain from using a single large game tree instead of growing a number of tiny
trees. While this allows us to derive a reasonable and expressive comparison of
approaches, it also leaves room for more involved comparisons between Distribu-
ted-Tree-Parallelization and Root-Parallelization in general.

4.4 Chapter Conclusion

In this chapter, we presented a number of algorithmic and methodical enhance-
ments to parallelize MCTS on distributed memory HPC systems. We developed
and integrated an efficient distributed transposition table and advocate the use
of additional compute nodes to support necessary all-to-all communications and
thereby allow for multi-stage message merging. In conjunction with a sound pol-
icy that handles data sharing and synchronization frequencies we were able to
greatly increase our parallelizations scalability. To our knowledge, Distributed-
Tree-Parallelization is currently the best scaling distributed MCTS implementa-
tion. We evaluated the behavior of our parallelization in our high-end Go en-
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gine Gomorra and show that, for the game of Go, Distributed-Tree-Parallelization
scales up to 128(+32) compute nodes in self-play experiments.

A close look at performance measurements regarding bandwidth usage and com-
munication related computation overheads for varying system configurations points
to possible future improvements. Presently, it appears that we reached the lim-
its of RDMA based tiny-message communication. As one future direction, we
therefore focus on limiting the number of communication peers per search rank as
already done for the broadcast ranks.

In our discussion on the differences between Distributed-Tree-Parallelization and
Root-Parallelization, we pointed out that, to our conviction, both approaches
partly target on different objectives. While Root-Parallelization helps to prevent
falling into local optima by diversifying the search on different compute ranks,
Distributed-Tree-Parallelization aims on growing a single large game tree rep-
resentation, leveraging deeper searches. A promising future direction might be
another kind of combination of both approaches by having several instances of
Distributed-Tree-Parallelization searching in parallel using Root-Parallelization.
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CHAPTER 5

Move Prediction in Computer Go1

From the early days of research on Computer Go in the late sixties [109][110] until
today, move prediction systems have been an integral part of strong Go programs.
With the recent emergence of MCTS, the strength of Go programs increased dra-
matically to a level that appeared to be unreachable only seven years ago. MCTS
learns a value function for game states by consecutive simulation of complete
games of self-play using semi-randomized policies to select moves for either player.
The design of these policies is key for the strength of MCTS Go programs and
has been investigated by several authors in recent years [43][4][28][93][51]. Move
prediction systems can serve as an important building block for the definition of
MCTS policies as has been shown in, e.g., [28] and [42].

Several move prediction systems have been developed especially for the use with
Computer Go [109][110][101][96][4][28] and rates for correctly predicting moves
between 33.9% [4] and 34.9% [28] have been reported. However, these prediction
rates have been produced under pretty unequal conditions using, e.g., different
sizes of training data sets (ranging from 652 [28] to 181,000 [96] games) or differ-
ent kinds and numbers of patterns (ranging from about 17,000 [28] to 12M [96]).
Additionally, apart from the prediction rate, one might be interested in the tech-
nique’s needs for computation and memory resources.

In this chapter, we review three prediction systems presented in literature, namely
those of Stern, Herbrich and Graepel [96], Weng and Lin [103] and Coulom [28],
and compare them under equal conditions for move prediction in the game of Go.
Here, equal means that we use the same training and test data sets as well as the

1We presented parts of the content of this chapter before at the IEEE International Conference on Computational
Intelligence and Games (cf. [104]).
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same set of shape and feature patterns to represent board configurations and move
decisions. To that end, we had to modify the algorithm of Stern et al. in a way
already proposed by Stern himself in [95] to support teams of patterns. We also
slightly modified the algorithm of Weng and Lin that was not explicitly developed
for the use as move predictor in Go. Apart of this, we did not investigate or argue
on the theoretical plausibility of the mentioned approaches but concentrate on
their empirical comparison.

The purpose of this work is the search for a time and memory efficient online
algorithm for continuous adaptation of a move prediction system to actual ob-
servations which, as we believe, is a promising approach to further increase the
strength of Go programs. In a larger context, the goal is to migrate knowledge
gathered during MCTS search in certain subtrees into a prediction model that
itself is used all over the search space by the simulation policies. This might
improve MCTS’s evaluation quality in complex positions. It might also help to
reduce the horizon effect that occurs as a result of the limited range of vision,
denoted as horizon, of tree search algorithms. Also with MCTS, near-root nodes
are evaluated better than nodes further down the tree. This allows MCTS for
pushing complex situations, like semeai (cf. Section 2.1.1, page 9) in case of Go,
out of its range of vision. Accordingly, the horizon effect can lead to temporarily
severe misevaluations.

5.1 Background

This section introduces some necessary background that is needed in the remainder
of this chapter. Starting with notations, we presentation the Bayes Theorem and
some basic techniques used with move prediction systems.

5.1.1 Terminology

As introduced in Section 3.1 we write a game as G := (S,A,Γ, δ), with S being
the set of all possible states (i.e. game positions), A the set of actions (i.e. moves)
that lead from one state to the next, a function Γ : S → P(A) determining the
subset of available actions at a state and the transition function δ : S×A→ {S, ∅}
specifying the follow-up state for a state-action pair, where δ(s, a) = ∅ iff a /∈ Γ(s).

In the remainder, state-action pairs will be abstracted by teams of patterns with
corresponding pattern-strength values. We write the vector of n pattern strength
values as θ ∈ Rn. Patterns are assumed to be binary, i.e., either they apply
for a given state-action or not. We write φ(s, a) ∈ {0, 1}n for the binary vector
denoting which of the n existing patterns apply for a given state-action pair (s, a).
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The prediction systems are trained and tested on sets of game positions, each
annotated with an expert’s move decision that is to be learned respectively pre-
dicted. We write D = (s, a1, a2, . . . , an) for a move decision that is made up of
a game position s and the list of all moves a1, a2, . . . , an available in s among
which a1 is the expert’s move decision that is to be learned. We further write
D = D1, D2, . . . , Dn for a series of move decisions.

5.1.2 Probability Models for Paired Comparison

There exist several probability models for paired comparison. Two of the most
prominent linear models are termed Thurstone-Mosteller (TM) and Bradley-Terry
(BT). Given two individuals i and j and associated values θi and θj describing their
respective strength, the before mentioned probability models allow to estimate the
outcome of competitions between i and j. If we denote the observed strength of the
individuals in a sample competition by random variables Xi and Xj respectively,
a linear model for paired comparison takes the form

P (Xi > Xj) = P (i beats j) = H(θi − θj) ,

with H being a monotonic, increasing function, with H(− inf) = 0, H(+ inf) = 1
and H(−x) = 1 −H(x) [47]. Hence, the probability of individual i winning over
j, given their respective strength values θi and θj, is assumed to be H(θi − θj).
Two different choices of H resulting in the two probability models TM and BT
are introduced in the remainder.

The Thurstone-Mosteller (TM) Model

The Thurstone-Mosteller Model (TM) assumes the strength of an individual i to
be Gaussian distributed with N (θi, β

2
i ). Thus, in addition to the strength θi each

individual is also assigned a variance β2
i that models the uncertainty about the

individual’s actual performance. The probability that i beats j is then modeled
by

P (i beats j) = Φ

 θi − θj√
β2
i + β2

j

 ,

where Φ denotes the cumulative distribution function of the standard normal
distribution.
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The Bradley-Terry (BT) Model

The Bradley-Terry Model (BT) [18] is based on a logistic distribution to estimate
the outcome of games between two individuals with given strength values θi and
θj respectively. It models the probability that i beats j by

P (i beats j) =
eθi

eθi + eθj
=

γi
γi + γj

, with γi := eθi .

The BT Model is also the base for the well known Elo rating system [34] that is
used, e.g., to rate human chess players (cf. Section 2.1.1, page 10).

Hunter [54] derived several generalizations of the BT model. One of them allows
the prediction of the outcome of competitions between an arbitrary number of
teams of individuals with the simplifying assumption that the strength of a team
equals the sum of the strengths of its members (note that eθi+θj = γiγj):

P (1-2 beats 4-2 and 1-3-5) =
γ1γ2

γ1γ2 + γ4γ2 + γ1γ3γ5

. (5.1)

Given a probability model for predicting the outcome of competitions between
individuals or teams of individuals, we can formulate the problem of determining
the individuals’ strength values θi (in case of TM also βi), based on a number
of observations of competitions among those individuals in D1, D2, . . . , Dn. The
Bayes Theorem poses one possible way to make such inferences.

5.1.3 Bayes Theorem

From the Bayesian viewpoint, probabilities can be used to express degrees of belief.
Given a proposition A, a prior belief in A of P (A) (expressed by a probability)
and a probability model P (A|B) that denotes the likelihood of A observing some
supporting data B, the Bayes Theorem relates the posterior probability P (B|A)
of observing data B given A in future experiments as follows:

P (B|A) =
P (A|B)P (B)

P (A)
. (5.2)

Hence, having a probability model p(D|θ) for a move decision D given some model
parameters θ, one might infer the posterior probability of the model parameters
p(θ|D) observing some move decisions D using Bayes Theorem. This inference
is a basic element of the prediction systems considered in this chapter. Hence,
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putting the Bayes Theorem in the context of move prediction systems considered
in the remainder of this chapter, it takes the following form:

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

. (5.3)

A challenging point in the inference is the possible emergence of difficult to handle
integrals in the computation of p(D) when considering continuous distributions:
p(D) =

∫
p(D|θ)p(θ)dθ. However, note that a point estimate of θ that maximizes

p(θ|D) can be determined more easily, as the denominator is not of importance in
this case. Maximizing p(θ|D) gets further simplified by using a uniform prior p(θ).
The inference then boils down to maximizing the likelihood L =

∏N
j=1 P (Dj|θ).

5.1.4 State-Action Abstraction with Patterns in Computer Go

A common technique for the modeling of move decisions in games is the abstraction
of the state-action space with patterns that represent certain move properties.
Move prediction systems can be realized by training such models on collections of
move decisions. Depending on the model’s level of abstraction, a corresponding
prediction system can be more or less general. The more abstract the model, the
better the corresponding prediction system might generalize. However, increasing
levels of abstraction naturally might lead to lower prediction quality for specific
cases.

Let us first consider a basic case, in that each state-action pair, i.e., each move in
a given position, is represented by a single pattern. Here, each move decision can
be represented in form of a list of patterns, each representing one of all possible
moves. One of those patterns is marked as the final choice. A move decision is then
regarded as a competition between patterns that is won by the pattern representing
the final move choice. While observing such competitions, we aim to learn strength
values θi for each of the patterns that allow the use of probability models for paired
comparison as introduced in Section 5.1.2 for move prediction. Hence, a move
decision yields a sequence of strength parameters vector D = (θ1, θ2, . . . , θk) where
θ1 is the strength of the winning pattern2. A variant that allows more concise
modeling is the use of pattern teams instead of single patterns for the abstraction
of a move in a given position. Recall that in Section 5.1.2 we introduced the
generalized BT model that can cope with teams of patterns. We extent our θ
notation to teams by writing θij for the strength value of team’s i member j.

2For legibility reasons, we write θi short in this context when we actually mean φ(s, ai) · θ, i.e., the value of
the element of θ that belongs to the pattern that is active for a given state-action pair. Hereby the indexing
becomes ambiguous, but it should always become clear from the context which notation is used.
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In the remainder of this chapter, we distinguish two types of patterns: shape
patterns and feature patterns. Both are introduced below.

Shape Pattern

Shape patterns, that describe the local board configuration around possible moves
and thus around yet empty intersections were already used in the early time of
research on Go [97]. Stern et al. [96] describe diamond shaped pattern templates
of different sizes around empty intersections to abstract the state-action space as
shown in Figure 5.1. As can be seen in the figure, they distinguish 14 different
sizes, of which the largest one (14) refers to the whole board configuration. We
used the same 14 types of shape patterns for all experiments presented in this
chapter.

Figure 5.1: Shape-Pattern templates of sizes 1 to 14 (Source: [96]).

Note, that two shape patterns that can be converted to the same pattern by
rotation and/or mirroring, can be regarded as equal in the pattern based model.
Note further, that a move in the middle of the pattern will have a different value
for the white and the black player in general. However, given some pattern and a
corresponding value for placing a black stone in the middle obviously results in the
corresponding color-inverted shape pattern to have the same value for placing a
white stone in its center instead. All three operations, rotation, mirror and color-
inversion can be performed with Zobrist-Hashing by simple computations on a
64-bit hash value only [109], making the use of shape patterns highly efficient.
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Especially with the use of whole board patterns, the total number of possible shape
patterns becomes even larger than the number of legal Go positions. To reduce
the set of patterns to a reasonable number, frequently appearing shape patterns
are typically harvested in a seperate step from a collection of move decisions. Only
shape patterns that occur a given number of times in the move decision collection
are regarded in later training and prediction steps.

Feature Pattern

In addition to shape patterns, so called feature patterns, that represent non-shape
properties of state-action pairs are used. Table 5.1 lists the feature patterns that
are used for the experiments presented in this chapter. In this table there are two
groups of feature patterns that cope with the distance between two moves. To
measure this distance between two moves x = (x1, x2) and y = (y1, y2) we used
the following measure: dist(x, y) = |x1− y1|+ |x2− y2|+ max(|x1− y1|, |x2− y2|).
The same measure was also used in [28]. The features are grouped in a manner
that at most one feature per group can be active at the same time.

5.2 Bayesian Move Prediction Systems

We will now present three Bayesian prediction systems that were presented in
literature, namely those of Coulom [28], Stern, Herbrich and Graepel [96] and
Weng and Lin [103] together with according modifications we made to them in
order to allow for a fair comparison of those systems in the context of move
prediction for the game of Go. This presentation should mainly serve as a brief
summary of existing prediction systems rather than being a complete introduction
to the various approaches.

The input for all presented systems is a number of game positions, each annotated
with the single move that is regarded to be the best. Once a new position is seen,
each move is characterized with a team of patterns. Hence, after this preprocessing
step, the input for all presented algorithms is a number of competitions between
pattern teams, where one of the teams is marked as the winning team. For the
remainder of this chapter we define all variables related to the winning team to
be indexed with 1.

A common element of all considered methods is the definition of a ranking model,
resulting in a single function L that represents the likelihood of the observed data
in the face of given pattern strength parameter values. Using Bayes-Theorem in

3The Simple-Ko rule forbids immediate recaptures of single stones (cf. Section 2.1.1).
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Table 5.1: List of feature patterns

# Feature Pattern Group

1 Capture of an opponent group that is adjacent to one of the player’s
groups that has only one liberty left

Capture
2 Recapture, i.e., a capture of an opponent group that was created by

capturing one of the player’s groups in the last turn
3 Capture at an intersection where the opponent could play otherwise to

connect to another group
4 Other kinds of captures
5 Extension, i.e., we extend a single liberty group Extension
6 Self-atari, i.e., this move creates a group that could immediately be

captured by the opponent
Self-atari

7 Atari (i.e. we will make an opponent group to remain with a single
liberty only) while there is a Simple-Ko3on the board Atari

8 Other kinds of Atari
9 Distance 1 to the edge of the board

Edge
10 Distance 2 to the edge of the board
11 Distance 3 to the edge of the board
12 Distance 4 to the edge of the board
13 Distance ≥5 to the edge of the board
14 Distance 2 to the previous move

Previous
move

15 Distance 3 to the previous move
...

29 Distance 17 to the previous move
30 Distance >17 to the previous move
31 Distance 2 to the move before the previous move

Before
previous

move

...
46 Distance 17 to the move before the previous move
47 Distance >17 to the move before the previous move
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the one way or another, this function is used to update the patterns strength
parameters with the objective to maximize L for the training data.

5.2.1 Minorization-Maximization

In [28], Coulom proposed a whole-history rating concept that iterates several times
over the whole training data with the objective to find the pattern strength val-
ues that maximize the likelihood of the given move decisions from the training
set according to the generalized Bradley-Terry model (cf. Equation 5.1 in Sec-
tion 5.1.2). Following the work of Hunter [54], Coulom iteratively applied the
concept of Minorization-Maximization (MM), a hill climbing technique, on

L(θ) =
N∏
j=1

P (Dj|θ), (5.4)

where N is the number of move decisions in the training set and P (Dj|θ) is the
generalized Bradley-Terry model. By using the generalized Bradley-Terry model,
Coulom benefits from the ability to abstract each move with a team of patterns
and thus, to use in addition to shape patterns a larger number of additional feature
patterns like, e.g., the distance to the move played just before. Note that L can
be written as a function of each of the single strength parameters γi = eθi allowing
for partial optimization in one dimension.

As illustrated in Figure 5.2, MM is an optimization algorithm where, starting
from an initial guess γ0, a minorizing function m(·) for L(·) is build in γ0 (i.e.
m(γ0) = L(γ0) and ∀γ : m(γ) ≤ L(γ)) so that its maximum can be given in
closed form. Finally the maximum γ1 of m is chosen as an improvement over γ0.
Note that only in this paragraph, subscripts denote subsequent iterations of MM
instead of indices into the vector of pattern strength values θ.

(a) Initial guess (b) Minorization (c) Maximization

Figure 5.2: Minorization-Maximization (Source: [28]).

In order to find the pattern strength parameter values that maximize function L
as given in Equation 5.4, MM requires us to iterate a number of times over the
complete training set to update the strength values γi = eθi of all patterns until
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convergence. Given a number of competitions, i.e., move decisions, Coulom de-
rived the following update formula for the individual pattern strength parameters:

γi ←
Wi∑N
j=1

Cij
Ej

, (5.5)

where N is the number of competitions in the training set, Wi is the number of
times pattern i was a member of the winning team in all N competitions, Cij is
the strength of the team-mates of pattern i in competition j and Ej is the sum of
the strength of all teams competing in j. For more details on the derivation of the
update Formula 5.5 we refer to Coulom’s paper [28]. We applied this approach
following an implementation example published by Coulom on his homepage4.
Here, after a first update with Formula 5.5 for all gamma values, he selects the
feature group that lead to the biggest improvement towards minimizing L during
its last update also for the next update, until the last change of the logarithm of
L was smaller than some threshold for each feature group. In this comparison we
used a threshold of 0.001.

5.2.2 Bayesian Ranking Model

The probability model for game decisions in this approach developed by Stern et
al. [96] is based on the TM model. In addition to the pattern strength that is
modeled as a Gaussian, they account for varying performances or playing styles of
players that produced the training set by adding a fixed variance β2 to a pattern’s
strength distribution. Hence, the performance of a pattern i with strength θi =
N (µi, σ

2
i ) is given by xi = N (θi, β

2). They characterize each state-action with
a single combined shape-feature pattern, i.e., a shape pattern that additionally
contains a tiny binary feature vector. Individual strength values are learned for
each such combined pattern. Hence, the total number of patterns used by the
system grows exponentially in the number of binary features considered.

Given a board position with k possible moves and corresponding strength values
θ1, . . . , θk, they give the following joint distribution for the probability that the
pattern indexed with 1 is the best performing move:

p(i∗ = 1,x,θ) =
k∏
i=1

si(θi)
k∏
j=1

gj(xj, θj)
k∏

m=2

hm(x1, xm), (5.6)

4Rémi Coulom’s website on MM is located at http://remi.coulom.free.fr/Amsterdam2007/.
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where

si = N (θi;µi, σ
2
i ),

gj = N (xj; θj, β
2) and

hm = I(x1 > xm).

Here, I(cond.) is the indicator function that equals 1 in case the given condition
holds and 0 otherwise. The distribution is a product of small factors and can be
represented as a graphical model, the so called factor graph. Figure 5.3 shows an
example of such a graph. For tree like factor graphs, there exist message passing
algorithms that allow for efficient Bayesian inference in the graph by exploiting the
graphical structure of the underlying distribution5. Except of the hm, all factors
yield Gaussian densities. In order to keep computations simple, emerging non-
Gaussian distributions are approximated with Gaussians. The resulting inference
algorithm is called Expectation Propagation [75].

As a result, we can infer new values for the multivariate pattern strength distri-
bution θ by incorporating observations from a move decision. This new values
can now act as the prior for incorporating the next observation. This makes the
method a filtering algorithm also called assumed density filtering, where assumed
stems from the approximation of emerging non-Gaussian distributions mentioned
above.

The probability model used for inference in the Bayesian Full Ranking method of
Stern et al. [96] is given by Equation 5.6. This distribution can be represented
with a factor graph where each variable and each factor is represented by a node.
The edges connect each factor node with the nodes of those variables the factor
depends on. Stern et al. proposed a model that abstracts each move with exactly
one shape-pattern with some binary non-shape properties encoded in it. We ex-
tended the model by introducing pattern teams as they were used in Coulom [28]
by adding another level to the graph. This allows for the use of more non-shape
patterns and makes a head-to-head comparison with Couloms approach possi-
ble. As some patterns can be member of more than one team, the graph might
contain several cycles. Figure 5.3 shows the factor graph of this model with the
extension to pattern teams. In this figure, θi now represents a team of patterns
instead of a single pattern and θij a member of team i. In order to cope with the
introduced cycles we used so called loopy-belief propagation for message passing.
The possibility to do this was already mentioned by Stern himself in [95]. The
message passing algorithm is rather involved and we refer to [95] for a description
of message passing in this particular setting with a derivation of all the update
equations.

5See [72] for more information on message passing in factor graphs.
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In the remainder of this chapter, we call the modified, pattern teams related
approach Loopy-Bayesian Ranking.

Figure 5.3: Factor graph of Bayesian Full Ranking Model (from [95]) extended to pattern teams.

5.2.3 Bayesian Approximation Ranking

Weng and Lin [103] present a more general Bayesian approximation framework
for online ranking of players from games with multiple teams and multiple players
and compare their method to the online ranking system TrueSkillTM [49] that
was developed and is used in commercial products by Microsoft. TrueSkill has
a lot of similarities to the Bayesian Full Ranking Model described above. The
framework presented in [103] can be used with the Bradley-Terry as well as the
Thurstone-Mosteller and other ranking models. Like the Bayesian Full Ranking
system of Stern et al., the players’ strength values θi are updated after each new
observation and are assumed to be normal distributed with mean µi and variance
σ2
i , i.e., θi = N (µi, σ

2
i ). As a main achievement, Weng and Lin were able to

construct computationally light-weight approximated Bayesian update formulas
for the mean and variances of the θi by approximating the integrals that naturally
show up in Bayesian inference analytically.

In this comparison we applied the algorithm based on the Bradley-Terry model
to the game of Go in order to compare it to the approaches of Stern et al. and
Coulom.

88



5.2 Bayesian Move Prediction Systems

As for the Bayesian Full Ranking model, Weng and Lin use a probability model for
the outcome of a competition between k teams that can be written as a product
of factors that each involve only a small number of variables:

L(θ) =
k∏
i=1

k∏
q=i+1

P (outcome between team i and team q|θ),

where P is given by the Bradley-Terry model.

For their system they consider a complete ranking of the teams whereas in case
of a move decision in Go we have exactly one winning team of patterns and all
the others are ranked second. Hence, in addition to the aforementioned function
L, we made experiments with a simplified function

LGo(θ) =
k∏
i=2

P (team 1 beats team i|θ).

Recall that we defined the winning team’s index to be 1. In all our preliminary
experiments we achieved significantly better prediction rates using LGo instead of
L. Hence, in section 5.3 all experiments were made using LGo. In a comment
on our paper [104], Weng pointed out, that the use of LGo might introduce some
undesired bias in the parameter updates, as the variance of the winning team
gets reduced much faster than for the losing teams. Hence, further improvements
might be possible by accounting for this.

The actual complete algorithm for the update of the pattern strength parameter
vectors µ,σ2 on the observation of a new competition result towards maximizing
LGo is shown in Algorithm 1. These slightly modified algorithm is termed Bayesian
Approximation Ranking in the remainder of this chapter.

5.2.4 Probabilistic Ranking

In addition to the three above mentioned Bayesian prediction systems, we add a
very simple system to the comparison that we named Probabilisitc Ranking. To
train this model on a number of move decisions, we simply count for each single
pattern the number of times it was seen in the training set, as well as the number
of times the pattern was in a winning move’s team of patterns. The pattern
strength values of each pattern θi are then computed by:

θi =
number of times pattern i was in a winning move’s team

number of times pattern i was seen in the training set
.

For prediction, the value of a move represented by a set of patterns F is computed
by
∑

j∈F θj. The moves are then ranked according to their value, where the highest
valued move is ranked first.
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Algorithm 1: Bayesian Approximation Ranking.

input : (µ1, σ
2
1), . . . , (µk, σ

2
k), with (µ1, σ

2
1) winning

output: Updated values µ and σ2

β2 := 13

for i = 1, . . . , k do
µi =

∑ni
j=1 µij

σ2
i =

∑ni
j=1 σ

2
ij

end
/* Update team strength */

for i = 1, . . . , k do
for q = 1, . . . , k, rank(i) 6= rank(q) do

ciq =
√
σ2
i + σ2

q + 2β2

p̂iq = e
µi/ciq

e
µi/ciq+e

µq/ciq

if i = 1 then

Ω1 ← Ω1 + σ2
1
p̂q1
c1q

∆1 ← ∆1 + σ1
c1q

σ2
1

c21q
p̂1q p̂q1

end

end

if i > 1 then

Ωi ← −σ2
i
p̂i1
ci1

∆i ← σi
ci1

σ2
i

c2i1
p̂i1p̂1i

end
/* Update pattern strength */

for j = 1, . . . , ki do

µij ← µij +
σ2
ij

σ2
i

Ωi

σ2
ij ← σ2

ij ·max

{
1− σ2

ij

σ2
i

∆i, ε

}
end

end
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5.3 Experimental Results

We made a series of experiments with the four algorithms presented in section
5.2. The main focus was on the comparison of the core learning routines of all
approaches under equal conditions, with respect to the achievable prediction per-
formance as well as the time needed to learn model parameters. For all approaches,
the procedure to produce predictions, once the model parameters were trained,
is rather equal and simple, so we did not investigate computational requirements
for this step. We will first give the experimental setup to show and discuss the
results afterwards.

5.3.1 Setup

All experiment computations were performed on a single core of an Intel X5650
CPU running at 2.67 GHz. The machine was equipped with 36 GB main memory.
The prediction systems were trained with up to 20,000 records of Go games played
on the KGS-Go-Server6 by strong amateur players on the 19× 19 board size. The
games were obtained from u-go.net7. The test set contained 1,000 game records
from the same source, however, the test set was disjoint from the training set.
Apart from this, a subset of the feature patterns presented in Coulom [28] was
used.

5.3.2 Results

Harvesting of Shape Patterns

The harvesting of shape patterns on a training set of game records has to be
done a single time only. The result is then used for all further experiments with
the distinct prediction systems. It is necessary to decide on a small subset of all
possible shape patterns that is regarded to contain most of the shape patterns that
are relevant in actual game play. We performed a single harvesting run for each
of three differently sized training sets (5,000, 10,000 and 20,000 game records) to
produce the sets of shape patterns that were considered by the learning systems
afterwards. These sets were built from all shape patterns that were seen at least
10 times during harvesting, considering only patterns around moves that were
actually played in the records.

We give some insights into the kind of shape patterns that were harvested on the
training set of 10,000 game records. Figure 5.4 shows the percentage of occurrences

6The website of the KGS-Go-Server is located at http://www.gokgs.com/
7A large database of Go game records is available online at http://u-go.net/gamerecords/
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of patterns of different sizes at different phases of the games. A phase lasts for
30 moves. One can see that, in early game phases with only a few pieces on the
board, mostly large patterns are matched. Naturally, as the positions get more
complex because of more pieces are placed on the board, mostly small patterns
are matched more than 10 times in later game stages.

Figure 5.4: Relative frequency of encountered shape pattern sizes per game phases in 10,000
games.

Empirical Comparison of the Prediction Systems

The result of the harvesting step described above is a set of relevant shape-patterns
that are likely to be regularly encountered in Go games. Together with the feature
patterns listed in Section 5.1.4, we obtain the fixed set of patterns that we used for
further experiments with the different prediction systems introduced above. Here
we first present results of experiments regarding the achieved prediction quality of
the different systems. We then look at the computational overheads induced by
training the models and conclude with some experiments targeting at directions
for further improvements of move prediction systems.

Figure 5.5 shows the cumulative distribution of finding the expert move within
the first n ranked moves for the four prediction systems with a training set size of
10,000 games. The rate of ranking the expert move first is, for each system, larger
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as in the experimental results presented in the corresponding original papers. This
might be the case because of a larger training set for MM and the use of pattern
teams for the Loopy-Bayesian Ranking system. Even further, the curves are pretty
similar for all systems except for the very simple probabilistic ranking.

Figure 5.5: Cumulative distribution of finding the expert move within the first n ranked moves.

Figure 5.6 gives a closer look to the differences between the Bayesian systems by
showing the distance of the cumulative distributions to the one of the probabilistic
ranking system. Here we can see a small but significant better performance of the
Loopy-Bayesian Ranking system and MM over Bayesian Approximation Ranking
in ranking the expert move first. However, for finding the expert move in the first
n ranked moves for n ≥ 3 all systems perform almost equal.

Table 5.2 shows the development of prediction rates for different training set sizes.
It can be seen that all systems benefit from increasing training set sizes. We did
not conduct experiments with MM for 20,000 training games due to memory
limitations.

Table 5.2: Prediction rates for different training set sizes

5,000 10,000 20,000

Minorization-Maximization 37.00% 37.86% -
Loopy Bayesian Ranking 36.36% 37.35% 38.04%
Bayesian Approximation Ranking 34.24% 35.33% 36.19%
Probabilistic Ranking 29.16% 30.17% 30.92%

Regarding the distributions given in Figures 5.5 and 5.6, we should note that there
are a lot more moves available in early game stages than in the end games, when
the board is almost full of pieces. Therefore we measured the rank errors of the
systems at different game phases. The rank error is the fraction of the expert
move rank assigned by the system over the number of available moves. Figure 5.7
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5 Move Prediction in Computer Go

Figure 5.6: Difference of cumulative prediction rank distribution to probabilistic ranking distri-
bution.

shows these ranking errors in a box plot. The boxes range from the lower to the
upper quartile of the data and contain the median line. The whiskers cover 95%
of the data. Data points outside the whiskers range are explicitly shown as proper
data points.

(a) Loopy Bayesian Ranking (b) Bayesian Approximation Rank-
ing

(c) Minorization-Maximization

Figure 5.7: Ranking errors at different stages of the game

Figure 5.8 shows the average time needed by the systems per game during param-
eter training. Not surprisingly, Loopy Bayesian Ranking required a lot more time
than Bayesian Approximation Ranking. MM was iterated until convergence to a
certain level, leading to varying time consumption for different training set sizes.

A further interesting point is the dependency of the prediction rate of expert moves
on the size of the shape pattern that was matched for the particular move. The
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Figure 5.8: Time needed per game on different training set sizes

larger the pattern, the more information about the actual board configuration is
encoded in the pattern. So we expect to get better prediction rates, the larger the
matched patterns are. Figure 5.9 shows the achieved average prediction rates for
the different pattern sizes. The curve in the background of the figure shows the
distribution over all matched patterns of different sizes.

It can be seen that most of the patterns that are matched during a game are
of size 3 to 5. Of those, pattern sizes of 3 and 4 show the significantly worst
prediction rates. In order to improve here, we added a small feature vector to shape
patterns of size 2 to 4. Here we took exactly the same features as done by Stern
et al. [96]. Figure 5.10 shows the achieved improvements for the different ranking
systems at different game phases. Following Figure 5.4, small shape patterns are
mostly matched in later game phases, which explains the increasing impact of this
modifications for later game phases.

Inspired by our results, recently Wistuba and Schmidt-Thieme [105] realized an
application of factorization machines to move prediction in computer Go that
allows for efficient learning of sparse first order pattern dependencies. With their
prediction system, called Latent Factor Ranking (LFR), they obtained remarkably
high prediction rates. Figure 5.11 shows their results in form of the prediction
accuracy obtained at different game phases. The abbreviations MM and BAR
in the ledgend of their diagram denote Minorization-Maximization and Bayesian
Approximation Ranking, respectively. The setup of the experiments was identical
to ours. LFR1 and LFR5 are different versions of their developed prediction
system Latent Factor Ranking.
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Figure 5.9: Average prediction rates in relation to the size of the pattern that was matched at
the expert move.

Figure 5.10: Relative strength improvements from adding a small feature vector to shape pat-
terns of size 2 to 4 at different game phases.
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Figure 5.11: Move prediction accuracy in different game phases. Each game phase consists of
30 turns. (Source: [105])

5.4 Chapter Conclusion

In this chapter we compared three Bayesian systems for move prediction under fair
conditions and investigated their performance by using them for move prediction
with the game of Go. We observed that all prediction systems have a comparable
performance concerning their prediction accuracy but differ significantly in the
amount of time needed for model parameter training. Additionally we presented
some insight into the use of shape patterns that are prominent for modeling in
the game of Go. Following our observation, we were able to improve our pat-
tern system further and gained some improvement in terms of prediction rate.
Partly inspired by our findings, a novel move prediction system was developed for
Computer Go by Wistuba et al. [105].

The outcome of the investigations presented in this chapter might serve as a base
for further improving the performance of state-of-the-art MCTS based Go pro-
grams by online adaptation of Monte-Carlo playouts. Recent strength improve-
ment of Go playing programs, especially on large board sizes, were made by adding
more and more domain knowledge to the playout policies that made them smarter
and capable to understand more difficult situations that require selective and well
focused play. In order to further improve these policies we, among others (e.g.,
[33][7][8]), try to adapt simulation policies to the actual board position using in-
sights gathered by MC sampling. As a conclusion from the results presented in this
chapter, Bayesian Approximation Ranking appears to be a promising candidate
for the use with online model adaptation in such time critical environments. But
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5 Move Prediction in Computer Go

also the recently developed Latent Factor Ranking algorithm exposes promising
properties that deserve further investigations.
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CHAPTER 6

MCTS Driven Position Analysis1

A frequently mentioned limitation of Monte-Carlo Tree Search (MCTS) based Go
programs is their inability to recognize and adequately handle capturing races,
also known as semeai, especially when several of them appear simultaneously.
This essentially stems from the fact that certain group status evaluations require
deep lines of correct tactical play that somewhat oppose to the exploratory nature
of MCTS. In this chapter we present a technique for heuristically detecting and
analyzing regions in Go positions that are subject to ongoing fights and accordingly
contain groups of uncertain status. This is done during the search process of a
state-of-the-art MCTS implementation. We evaluate the strength of our approach
on game positions that are known to be difficult to handle even by the strongest
Go programs to date. Our results show a clear identification of semeais that are
contained in this positions and thereby advocate our approach as a promising
heuristic for the design of future MCTS simulation policies.

6.1 Motivation

A crucial part of MCTS algorithms is the playout policy used for move decisions in
game states where statistics are not yet available (cf. Section 3.4). In general, the
playout policy drives most of the move decisions during each simulation. Moreover,
in MCTS, the simulations’ terminal positions are the main source of data for all

1We presented parts of the content of this chapter before at the International Conference on Computers and
Games 2013 (cf. [46]). The work was inspired by Ingo Althoefer, who observed a correlation between the
existence of multiple peaks in score histograms produced during MCTS searches and misevaluations of strong
MCTS based Go programs. He pointed the author of this thesis to this apparent dependency at the European
Go Congress in August 2012 and hereby laid the foundation of this work.
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6 MCTS Driven Position Analysis

remaining computations. Accordingly, for the game of Go there exists a large
number of publications about the design of such policies, e.g., [43][27][28]. One of
the objectives playout designers pursue focuses on balancing simulations to prevent
biased evaluations [43][93][51]. Simulation balancing targets at ensuring that the
policy generates moves of equal quality for both players in any situation. Hence,
adding domain knowledge to the playout policy for attacking also necessitates
adding domain knowledge for according defense moves. One of the greatest early
improvements in Monte-Carlo Go were sequence-like playout policies [43] that
highly concentrate on local answer moves. They lead to a very selective search.
Further concentration on local attack and defense moves improved the handling of
some tactical fights and hereby contributed to additional strength gain of MCTS
programs. However, adding more and more specific domain knowledge with the
result of increasingly selective playouts, we open the door for more imbalance.
This in turn allows for severe false estimates of position values. Accordingly, the
correct evaluation of, e.g., semeai is still considered to be extremely challenging
for MCTS based Go programs [81]. This holds true, especially when they require
long sequences of correct play by either player. In order to face this issue, we
search for a way to make MCTS become aware of probably biased evaluations
due to the existence of semeai or groups with uncertain status. In this chapter
we present our results about the analysis of score histograms to infer information
about the presence of groups with uncertain status. We heuristically locate fights
on the Go board and estimated their corresponding relevance for winning the
game. The developed heuristic is not yet used by the MCTS search. Accordingly,
we cannot definitely specify and empirically prove the benefit of the proposed
heuristic in terms of playing strength. We further conducted experiments with
our MCTS Computer Go engine Gomorra on a number of 9 × 9 game positions
that are known to be difficult to handle by state-of-the-art Go programs. All these
positions include two ongoing capturing fights that were successfully recognized
and localized by Gomorra using the method presented in the remainder of this
chapter.

6.2 Background and Related Work

At the end of each MC simulation we obtain a terminal position and a correspond-
ing score value. The clustering of MC simulations into groups of similar scores,
takes a central role in our proposed method for identifying local fights in game
positions. The distribution of scores obtained at the single simulations’ terminal
positions appears to be almost normally distributed when performing an MCTS
search on an even position with no tactical fights present. Figure 6.1 shows the
normalized histogram of the scores obtained from 128,000 MCTS simulations on
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Figure 6.1: Normalized histogram of scores obtained from 128,000 MCTS simulations on an
empty 9× 9 Go board with komi 7.

the initial empty 9× 9 Go position2. The dotted line marks the average score of
all simulations.

Looking at the histogram, we make two additional observations. At first, there is a
spacing between each bucket. This is the case, because the score difference between
distinct terminal positions is most often even. To obtain two positions with an
odd score difference it needs for rather rarely appearing seki (cf. Section 2.1.1,
page 2.1.1). Second, the two extreme scores -88 and 74, that correspond to the
terminal positions with only white stones resp. only black stones remaining on
the board, appear quite often on the 9 × 9 board. Note that the tiniest possible
living group, i.e., the tiniest group that contains two eyes, already has a size of 8,
explaining the histogram values of zero next to the most extreme scores.

Let us consider the more complex situation depicted in Figure 6.2a, that was
designed by Shih-Chieh (Aja) Huang (6 Dan) and Martin Müller as part of a
regression test suite for their Go playing program FUEGO. The position contains
two semeais, one on the upper side of the board, the other on the lower right. In
Figure 6.2b, the two groups that belong to the upper side semeai are marked by
circles. When the game continues, only one of these two groups can survive. Due
to a sufficient number of outer liberties, marked with the letter o in the figure,

2The komi (cf. Section 2.1.1, page 10) was set to 7
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(a) Initial position.
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(b) Semeai 1.
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(c) Semeai 2.

Figure 6.2: Go position with two semeai. It is Black to move. Black should realize that both
semeai will be won by White.

it only needs an average skilled player to realize that White will win this semeai.
Black would need to place a stone on both of the intersections marked with a and b
in the figure, in order to create 2 eyes. If White plays on one of these intersections
first, Black must resort to capturing the whole white group but will be short of
liberties and accordingly die first. Figure 6.2c shows the corresponding groups
involved in the semeai at the lower right of the board. Also this second semeai
will clearly be won by the white player.

In such complex positions, we might encounter evaluation uncertainties from MC-
simulations regarding the survival of certain groups of stones. This is the case
because the semi-random playout policies are in general not capable of playing
out lengthy tactical fights correctly. The uncertainties will likely result in multi-
modal score distributions. Figure 6.3 shows the histogram obtained from 128,000
MCTS simulations computed for the Go position discussed above, that contains
two ongoing capturing races, i.e., semeai. We can distinguish four major score
clusters in the intervals [−20, 0], [15, 30], [30, 40] and [74, 74]. A fifth small cluster
can be discovered in the score interval [0, 10]. This small cluster will be ignored
by our algorithm due to its tiny proportional value. A distinction of four major
clusters is in line with our expectation when looking at a position with two se-
meais. Each semeai will be won by either Black or White, resulting in a total of
four possible outcomes. In case each outcome yields a different score, we expect
to see four score clusters in the histogram.

Note that MCTS in its original form is not informed about the multi modal
distribution of outcomes but guides simulations mostly based on the simulations’
mean outcome. In Figure 6.3, the dotted blue line shows the mean outcome to
be about 30 points, hence a solid win for Black. But in fact, the leftmost cluster,
representing a win for White, contains the correct position evaluation.

In the remainder of this chapter we present how to computationally obtain the
information about the existence of location of score cluster in histograms that were
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Figure 6.3: Normalized histogram of scores obtained from 128,000 MCTS simulations on a 9×9
Go position with two semeai.

generated during MCTS searches. We furthermore present a method for localizing
the respective groups with uncertain state that lead to each of the score clusters
on the Go board.

We decided to use a mean shift algorithm for detecting clusters in score histograms.
Mean shift is a simple mode-seeking algorithm that was initially presented in [39]
and more deeply analyzed in [26]. It is essentially a gradient ascent procedure on
an estimated density function that can be generated by Kernel Density Estimation
on sampled data. Modes are computed by iteratively shifting the sample points to
the weighted mean of their local neighboring points until convergence. Weighting
and locality are hereby controlled by a kernel and a bandwidth parameter. We
obtain a clustering by assigning each point in the sample space the nearest mode
computed by the mean shift algorithm. We refer to Section 6.3.2 for explicit
formulae and detailed information about our implementation.

The stochastic mapping of clusters to relevant regions on the Go board is realized
by the use of MC-heuristics [14][28]. Starting in 2009 several researchers came
up with the idea of using an intuitive covariance measure between controlling
a certain point of a Go board and winning the game. The covariance measure
is derived from the observation of MC simulation’s terminal positions[29]3[79][8].

3Available online: http://remi.coulom.free.fr/Criticality/.
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Such kind of measures are most often called (MC-)Criticality when being used in
the context of Computer Go. The particular publications around this topic differ
slightly in the exact definition and more remarkably in the way of integrating
MC-Criticality with the general MCTS framework. Coulom [29] proposed the
use of MC-Criticality as part of the feature space of a move prediction system
that in turn is used for playout guidance in yet rarely sampled game states, while
Pellegrine et al. [79] used the criticality measure with an additional term in the
UCT formula. Baudis and Gailly [8] argued for a correlation of MC-Criticality
and RAVE and consequently integrated both.

6.3 MC-Criticality Based Semeai Detection

In this section, we present our approach for detecting and localizing capturing
races (jap.: semeai) in positions of the game of Go by the clustering of MC sim-
ulations according to their respective score and the computation of cluster-wise
MC-criticality. When performing an MCTS search on a game position, a num-
ber of randomized game continuations called simulations are generated from the
position under consideration. Each of these simulations ends in some terminal
game position that can be scored according to the game rules. In case of Go, the
achievable score per simulation ranges from about -361 to +361 when using Chi-
nese scoring rules4 (cf. Section 2.1.1, page 8). A common first step for obtaining
information about the score distribution is the construction of a score histogram
that can be interpreted as an empirical density function by appropriate scaling.
Assuming that the presence of semeai likely results in more than one cluster of
simulation scores (depending on whether the one or the other player wins) we are
interested in identifying such clusters and the corresponding regions on the Go
board that are responsible for each particular cluster. Accordingly, semeai detec-
tion with our approach is limited to cases in which different semeai outcomes lead
to distinguishable final game scores.

In the following, we first introduce some notations and afterwards step through
our method starting with clustering.

6.3.1 Notations

Let S ⊆ Z be the discrete set of achievable scores. Having built a histogram H
of a total of n simulation outcomes, we write H(s) for the number of simulations
that achieved a final score of s ∈ S, hence

∑
s∈S H(s) = n. We denote the average

4The player that makes the second move in the game is typically awarded some fixed bonus points, called komi,
to compensate for the advantage the other player has by making the first move. Typical komi values are 6.5,
7 and 7.5, depending on the board size. Accordingly, the score range might become asymmetric.
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score of n simulations by s =
∑

s∈S H(s)/n. Each element c of the set of score
clusters C is itself an interval of scores, hence c ⊆ S. All clusters are disjunct in
respect to the score sets they represent. We write c(s) for the single cluster to
which a score s is assigned.

6.3.2 Clustering

As mentioned in Section 6.2 we use a mean-shift algorithm for mode seeking
and clustering in score histograms. The algorithm is based on a technique called
Kernel Density Estimation (KDE), that allows for computing an estimated density
function for histograms. As the name suggests, it makes use of a kernel. A kernel
function K : R → R is a symmetric weighting function with the properties of
being non-negative and real-valued integrable while additionally satisfying∫ + inf

− inf

K(x)dx = 1 .

In this chapter we solely use the so called triweight kernel K that is defined as

K(x) =
35

32

(
1− x2

)3 I(|x| ≤ 1) ,

where I(cond.) denotes the indicator function that equals to 1 if the condition in
the argument is true and to 0 otherwise. Figure 6.4 shows a plot of the kernel.
As can be seen, the kernel has bounded support between −1 and 1. Note that
K∗(x) := λK(λx) for any kernelK(x) also satisfies the above mentioned properties
of a kernel if λ > 0. Hence, we can change the range of our kernel from [−1, 1] to
[−h, h] by setting λ = 1/h. Figure 6.5 shows the curve of K

(
x−s
h

)
. In this context

h is called the bandwidth parameter of the kernel.
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Kernel Density Estimation (KDE)

When applying KDE to a normalized score histogram H(s)/n like the one shown
in Figure 6.3, we use the kernel to compute an estimated probability density value
for each score s as the weighted mean of H(s)/n and its local neighborhood. Here
the weighting is given by the kernel function. Hence, when perceiving f(s) =
H(s)/n as an empiric density function, using KDE with the triweight kernel with

bandwidth parameter h, we obtain a smooth estimated density function f̂ :

f̂(y) =
1

nh

∑
s∈S

H(s)K

(
y − s
h

)
.

The size of the neighborhood considered in the estimation of each score’s density
value solely depends on the bandwidth parameter h. The bandwidth should be
chosen in accordance to the certainty of the data that makes up the empiric density
function, i.e., the histogram. When only few simulations were done and/or the
simulations’ scores are of high variance, a larger bandwidth parameter should be
used to obtain a smooth estimate that ignores non-significant irregularities in the
empiric density function. To determine an appropriate value of the bandwidth
parameter h based on the number of simulations n and the observed variance of
the simulations’ scores σ̂, we use silverman’s rule of thumb [94] (p. 48):

h = CK · σ̂n−
1
5 with σ̂2 =

∑
s∈S(s− s)2H(s)

n− 1
,

with CK being a constant factor that depends on the actual kernel used. Silverman
gives the factor value of 3.15 to be used with the triweight kernel.

An example for a normalized histogram and the corresponding estimated density
function f̂ can be found in Figure 6.6, where f̂ is represented by the black curve.

Mean-Shift

The mean-shift algorithm can be used to seek for modes of f̂ . Given some initial
score x ∈ S and the kernel function used for determining f̂ , the mean-shift algo-
rithm computes the weighted mean mx of all scores in the neighborhood of x that
are covered by the kernel, i.e., [x−h, x+h] when using a bandwidth parameter of
h. Here, the weighting is according to the Kernel function. By thereafter setting
x to mx and repeating the procedure until convergence, the algorithm iteratively
shifts x towards a mode of f̂ .
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Figure 6.6: Estimated density function computed with KDE using the triweight Kernel.

To find all modes of f̂ in practice, we initialize proper mode variables ms for each
score s ∈ S to the respective score itself, i.e., ms = s. The mean-shift algorithm
now iteratively updates this mode variables by

ms =

∑
s′∈S H(s′)K

(
ms−s′
h

)
s′∑

s′∈S H(s′)K
(
ms−s′
h

)
until convergence. Figure 6.7a illustrates the initial positions of the single mode
variables ms when being initialized on our example histogram by crosses. Fig-
ures 6.7b to 6.7f then show their movement towards the actual modes of f̂ during
the first five mean-shift iterations. The different conversion points of the mode
variables are the positions of the modes of f̂ . As in this example, a satisfying result
is obtained already after 5 iterations, the procedure might need several hundred
iterations in less extreme cases. For example, for the empty 9× 9 board yielding
a histogram as depicted in Figure 6.1 on page 101, mean-shift needs about 200
iterations until convergence.

Clustering

We finally build one score cluster for each mode and write mc for the position
of the mode that corresponds to cluster c. To account for estimation errors and
sample variances we only consider clusters corresponding to mode positionsm with
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(a) Iteration 0.
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(b) Iteration 1.
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(c) Iteration 2.
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(d) Iteration 3.
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(e) Iteration 4.
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(f) Iteration 5.

Figure 6.7: Converging values ms in the first 5 iterations of the mean-shift operation.
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Figure 6.8: The four score clusters derived from means ms with f̂(ms) ≥ 0.01.

f̂(m) ≥ T for some appropriate threshold T . Each score s is then assigned to the
cluster c(s) = argminc∈C |ms−mc|. Figure 6.8 shows the resulting clusters for our
example histogram and a threshold value of T = 0.01 with buckets corresponding
to the same cluster being plotted with the same background.

6.3.3 Player-wise, Intersection-wise and Cluster-wise MC-Criticality

MC-criticality was suggested as an intuitive covariance measure between control-
ling a certain intersection of a Go board and winning the game by a number
of people in 2009, e.g., in [29][79]. Here, controlling an intersection from the
viewpoint of a specific player means, that in the game’s terminal position, the
intersection is either occupied by a stone of the player, or the intersection is oth-
erwise counted as the players territory (cf. Section 2.1.1, page 8 for the exact
meaning of the term territory). However, the complete information about which
player p is controlling intersection i is only available in terminal positions. For
non-terminal positions, we can try to estimate the information about control from
MC simulations. Each MC simulation generates a terminal position and thereby a
sample of control information for each single intersection. We can take each such
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sample as an observation of a random variable Xp,i for each player-intersection
pair, defined by

Xp,i =

{
1, if player p controls intersection i

0, else
.

In addition to the control information, each terminal position yields its associated
position score. We use this score in the context of an additional random variable
that we define for each of the score clusters that were found during the clustering
procedure presented in Section 6.3.2:

Xc =

{
1, if the score falls into cluster c

0, else
.

Hence, each MC simulation from a non-terminal position yields one terminal po-
sition and thereby a single observation of each of the above defined random vari-
ables. For example, for a 9×9 Go position, each MC simulation generates a single
observation of 2 · 81 + |C| random variables, where |C| denotes the number of
clusters found during clustering. Figure 6.9 depicts the observation of the random
variables as described above.

As mentioned above, MC-criticality was before introduced as an intuitive covari-
ance measure between controlling a certain intersection of a Go board and winning
the game. We propose a slightly modified measure to compute the correlation of
controlling a point on the Go board and achieving a score that falls into a given
interval. Let P = {Black,White} be the set of players, I the set of all board inter-
sections and C a set of score clusters determined as presented in Section 6.3.2. We
define the player-wise, intersection-wise and cluster-wise MC-criticality measure
g : P × I ×C → [−1, 1] by the correlation between the random variables Xp,i and
Xc:

g(p, i, c) := Corr(Xp,i, Xc) =
Cov(Xp,i, Xc)√

Var(Xp,i)
√

Var(Xc)

which gives

g(p, i, c) =
µp,i,c − µp,iµc

Z
with Z =

√
µp,i − µ2

p,i

√
µc − µ2

c ,

for µp,i,c = E[Xp,iXc], µp,i = E[Xp,i] and µc = E[Xc] with E[·] denoting expecta-
tion. Accordingly, µp,i,c denotes the ratio of all n simulations’ terminal positions
in which player p controlls intersection i and the score falls into cluster c, µp,i
represents the ratio of the simulations’ terminal positions in which player p con-
trols intersection i regardless of the score and µc is the ratio of simulations with
a final score that falls into cluster c.
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The measure g(p, i, c) gives the criticality for player p to control intersection i
by the end of the game in order to achieve some final score s ∈ c. The lowest
possible value that indicates a complete negative correlation is −1. Here, negative
correlation means that it is highly unlikely to end up in the desired score cluster
if player p finally controls intersection i.

Our measure becomes most similar to the former published intersection-wise crit-
icality measures when choosing the cluster CBlack = {s ∈ S|s > 0} representing a
Black win, and CWhite = {s ∈ S|s < 0} representing a White win. This clustering
then resembles the criticality by

gformer(i) ≈ g(Black, i, CBlack) + g(White, i, CWhite)

with the difference that g(p, i, c) uses the correlation instead of the covariance.

6.3.4 Detecting and Identifying Local Fights

Putting the clustering procedure from Section 6.3.2 and the criticality measure of
Section 6.3.3 together, we obtain a method for analyzing complete board positions
with respect to a possible presence of local fights. In case a local fight exists, we
are even able for approximately localizing it on the board.

To analyze a given position, we perform standard MCTS simulations and collect
data about the simulations’ terminal positions which is used to build the score
histogram H and obtain values for µp,i,c, µc and µp,i. All we need for this purpose
is a three dimensional array control, with a number of |P | · |I| · |S| elements of a
sufficiently large integer data type, initialize all elements to zero and increment
them appropriately at the end of each MC simulation. Here, for each terminal
position the value of element control(p, i, s) is incremented in case player p controls
intersection i and the position’s score equals s. Using, e.g., 32-bit integers in 19×19
Go, the memory consumption would equal to 2 · 361 · 723 · 4 = 2, 085, 136 byte,
hence about 2MB.

Given this, we create the histogram H by

H(s) =
∑
p∈P

control(p, i, s) for any fixed i ∈ I .

Note that any choice of i will lead to the same histogram, as we expect to see for
each intersection, that exactly one of the two players is controlling it in terminal
positions5.

5Although expecting that each intersection is controlled by one of the two players is valid in general, there are
the rare cases of seki points (cf. Section 2.1.1, page 8) in terminal positions that are controlled by neither
player. Due to the rareness of seki we ignore this exceptions.
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6.3 MC-Criticality Based Semeai Detection

Having the score histogram of n =
∑

s∈S H(s) simulations, we apply the clustering
procedure as described in Section 6.3.2 to obtain the set of score clusters C. As
mentioned in Sections 6.3.1 and 6.3.2, each cluster c ∈ C is constructed around a
mode of f̂ and we denote the corresponding mode’s position by mc. Given this,
we can derive the values for µp,i,c, µc and µp,i:

µp,i,c =
1

n

∑
s∈c

control(p, i, s) ,

µc =
1

n

∑
s∈c

H(s) ,

µp,i =
1

n

∑
s∈S

control(p, i, s) .

This in turn allows for the cluster-wise criticality computation as described in
Section 6.3.3. We hereby determine for each player the criticality of controlling an
intersection in order to make the game end with a score belonging to the respective
cluster. In case more than one cluster was found, the resulting distribution of
criticality values for a given player and cluster, typically shows high valued regions
that are object to a local fight. Thereby, the criticality values represent a stochastic
mapping of each cluster to board regions with critical intersections that have to
be controlled by one player in order to achieve a score that corresponds to the
cluster. By further comparison of the critical board regions of the varying clusters
and under consideration of the cluster’s mode positions mc, it might even be
possible to estimate the value of a single fight in terms of scoring points.

As a special case it might happen for two or more score clusters corresponding to
distinct regions on the board to overlap. Hereby, the score clusters might even
become undistinguishable and accordingly appear as a single cluster only. In such
special cases, the resulting single cluster would become mapped to the union of
all involved critical regions.

In the next section, we present results achieved with our approach on a number
of example Go positions.

6.3.5 Experiments

Based on our Go program Gomorra, we implemented our approach and made a
series of experiments on different Go positions that contain multiple semeai. For
our experiments, we concentrated on a number of two-safe-groups test cases out
of a regression test suite created by Shih-Chieh (Aja) Huang (6 Dan) and Martin
Müller [53]. The collection of problems in this test suite was especially created
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to reveal the weaknesses of current MCTS Go engines and is part of a larger
regression test suite of the FUEGO Open Source project6.

Figure 6.10 shows one of the test positions that contains two semeai, one on the
upper right, the other on the lower right of the board. Black is to play and the
result should be a clear win for White, hence a negative final score, because both
semeai can be won by the white player. Figure 6.10a shows the corresponding
score histogram of 128,000 MC simulations. The colors indicate the clustering
computed by the method described in Section 6.3.2. Figures 6.10b, 6.10c, 6.10d
and 6.10e show the respective criticality values for the white player to end up
in cluster 1, 2, 3 and 4, counted from left to right. Positive correlations are
illustrated by white squares of a size corresponding to the degree of correlation.
Each intersection is additionally labeled with the criticality value. One can clearly
see how the different clusters map to the different possible outcomes of the two
semeai.

In the same manner, on page 116 Figures 6.11a to 6.11d show the results for test
cases 1, 2, 3 and 5 of the above mentioned test suite (test case 4 is already shown
in Figure 6.10). We restrict the result presentation to the score histograms and
the criticality for player White to achieve a score assigned to the leftmost cluster.
The histograms and criticality values always show the correct identification of two
separate semeai. We took the leftmost cluster, as for the given test cases this
is the one containing the correct evaluation, i.e., a win for the white player. As
can be derived from the shown histograms, in all cases, Gomorra gets distracted
by the other possible semeai outcomes and wrongly estimates the position as a
win for Black as it is typical for MCTS programs that only work with the mean
outcome of simulations.

Figure 6.12 shows results for a 13x13 game that was lost by the Go program
Pachi playing Black against Alex Ketelaars (1 Dan). The game was played at the
European Go Congress in Bonn in 2012 and was one of only two games lost by
Pachi in the 13x13 tournament. As can be seen in the histogram, Alex managed
to open up a number of fights. Again, the board shows the criticality values for
the leftmost cluster and reveals Gomorra’s difficulties in realizing that the lower
left is clearly White’s territory.

The position discussed above is one example of a number of games Ingo Althoefer
collected on his website7. The site presents peak-rich histograms plotted by the Go
program Crazy Stone. Althoefer came up calling such histograms Crazy Shadows.
Rémi Coulom, the author of Crazy Stone, kindly generated a Crazy Analysis for
the 13x13 game discussed above for comparison8.

6Available online at http://fuego.svn.sourceforge.net/viewvc/fuego/trunk/regression/
7http://www.althofer.de/crazy-shadows.html
8http://www.grappa.univ-lille3.fr/∼coulom/CrazyStone/pachi13/index.html
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(a) Score histogram from 128,000 simulations.

(b) Criticality for White to reach a score in
cluster 1 (counted from left to right).

(c) White’s criticality for cluster 2.

(d) White’s criticality for cluster 3. (e) White’s criticality for cluster 4.

Figure 6.10: The player-wise criticality values reveal the critical intersections on the board for
making the game end with a score associated to a specific cluster. The locations
of the two capturing races are clearly identified.
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(a) White’s criticality for leftmost cluster and score histogram for two-safe-groups test case 1.

(b) White’s criticality for leftmost cluster and score histogram for two-safe-groups test case 2.

(c) White’s criticality for leftmost cluster and score histogram for two-safe-groups test case 3.

(d) White’s criticality for leftmost cluster and score histogram for two-safe-groups test case 5.

Figure 6.11: Player-wise criticality for another 4 test cases of the two-safe-groups test suite.
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(a) Score histogram after 128,000 simulations.

(b) Criticality for player White to reach a score of the leftmost cluster.

Figure 6.12: Analysis of a position occurred in the game between Go program Pachi (Black) vs.
Alex Ketelaars at the European Go Congress 2012 in Bonn (move 90).
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6.4 Chapter Conclusion

We presented a method to detect and localize local fights in Go positions and
explained how to integrate the detection into existing MCTS implementations.
Doing this in practice, we present a number of examples that demonstrate the
power of our approach. However, the detection and localization of fights alone
is only a first step towards improving the semeai handling capabilities of modern
MCTS based Go programs. We must develop and evaluate methods to use the
gathered knowledge in form of criticality values in the simulation policies to finally
turn it into increased playing strength. Specifically, we are highly convinced that
remarkable improvements can only be achieved when using the gathered infor-
mation even in the playout policies. As the criticality computation is too time
consuming to be done at every game state in the search tree we must restrict
its computation to frequently visited tree nodes. It then might be well suited to
support on-line learning techniques for move prediction models [104] to focus on
critical board sites.

Accordingly, in future work, we plan to investigate the use of some kind of large
asymmetric shape patterns that dynamically adapt their size and shape to the
critical regions as they are determined by the presented method. Integrating
those patterns into existing move prediction systems as they are widely used in
Computer Go in addition with training their parameters during the search pro-
cess builds the next interesting challenge. Already now, the results might be of
interest for human Go players using Go programs to analyze game positions9.
In chess, similar analysis tools were introduced in the early 1990’s, for instance
in the commercial database system by ChessBase company. They have become
indispensable for masters’ analysis.

9Some more context to existing visualizations for computer aided position analysis can be found online at
http://www.althoefer.de/k-best-visualisations.html.

118



CHAPTER 7

Summary and Outlook

This chapter summarizes the contributions of this thesis and lists conclusions
that can be drawn from our work. It further gives a number of potential future
directions for the various topics discussed.

7.1 Contributions

Monte Carlo Tree Search is a very active field of research in these days. Starting
with its enormous success in Computer Go, we regularly see new applications of
MCTS to an ever increasing number of domains. In this thesis, we presented a new
general technique for parallelizing MCTS on high performance compute clusters
that could serve for faster and deeper searches in various search domains. We took
the search domain of Computer Go for a practical implementation and empirical
analysis of our approach, as it is the most studied MCTS domain by today. We
further investigated the performance of move prediction systems and developed a
new technique for an MCTS-guided automated position analysis for Go. In more
detail, we made the following contributions to the research field of MCTS:

• We developed, implemented and analyzed a novel technique for parallelizing
MCTS for hybrid shared and distributed memory systems. Our paralleliza-
tion, called Distributed-Tree-Parallelization, maintains a single large game
tree representation in memory. The distribution of the game tree allows for
efficient usage of the entire distributed memory available in a cluster and
thereby allows for more extensive recording of simulation statistics. We pre-
sented an efficient method for distributing a transposition table among the
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single compute nodes of a cluster that can safely process concurrent accesses.
We further regulated the load balancing and introduced the use of additional
compute nodes to leverage asynchronous all-to-all communication. We con-
ducted extensive experiments that demonstrate the power and limitations
of our approach. We empirically determined a scaling to more than 2000
compute cores in the best setting.

• As a base for the implementation of our parallelization, we developed an
MCTS Go program called Gomorra with various state-of-the-art heuristics
and extensions that yields a performance in terms of playing strength com-
parable to current strong Go programs. Implementing our parallelization on
top of a strong state-of-the-art MCTS program makes us confident that our
findings could be transferred to most other modern MCTS search implemen-
tations. Scaling to more than 1000 compute cores from a strong single node
Go engine allowed us to get to the strength of the currently strongest Go
programs in the world.

• Our comparison of a number of move prediction systems under equal condi-
tions showed rather small differences in their respective prediction quality.
Further analysis of the value of merging shape patterns with feature patterns
gave rise to the assumption that further major improvements are possible.
Partly motivated by our results, Wistuba et al. [105] developed a novel pre-
diction system based on factorization machines that apparently outperforms
the former best prediction systems.

• We believe that generalizing knowledge obtained from MCTS simulations
is among the most promising future directions for Computer Go. MCTS
based programs have particularly difficulties in evaluating positions when
long sequences of tactical play are required for an accurate assessment. We
developed a method for an automatic position analysis during regular MCTS
searches. We thereby created a detection mechanism for potential evaluation
inaccuracies and presented a way for heuristically localizing regions on the
Go board that are responsible for such evaluation uncertainties.

7.2 Conclusions and Lessons Learned

From the work presented in this thesis, we draw the following conclusions:

While searching for a scalable parallelization for the Monte-Carlo Tree Search
framework, we were guided from the idea of maintaining a single large distributed
representation of the game tree in memory. This is in strong contrast to other
parallelizations for distributed memory machines and allows for a more exten-
sive collection of statistical sample data from MC simulations. Our empirical
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experimental results strengthen our conviction that this approach indeed leads to
significant search quality improvements.

It was in doubt if MC simulations can efficiently be distributed on a large clus-
ter, even if high performance networks are available. With the use of modern
techniques like RDMA with a low latency Infiniband interconnect and efficient,
concurrently accessible data structures, as well as load balancing techniques and
a proper broadcast support mechanism, we were able to create a fully functional
Go program that scales to more than a thousand compute cores.

But at the end, also the scalability of our approach is limited and we observe first
degradations when using about 1000 compute cores. Our extensive experiments
point to RDMA as an important source of our performance on the one hand but
also a potential limiting technique when using many compute nodes on the other
hand. RDMA requires for active polling of certain memory regions to perceive
the completion of asynchronous communication. Such polling tasks bound CPU
resources to an extent relative to the number of communication peers. This nat-
urally goes along with increasing latencies and accordingly creates a scalability
limitation when using many communication peers.

Certainly, also the ratio of MC simulations that are computed in total to the
number of MC simulations that are computed in parallel is crucial for the obtain-
able overall performance. For example, performing 1000 simulations in total and
performing all of them in parallel on 1000 compute units, we obviously end up in
a result that cannot make use of the tree part of MCTS but is like a plain MC
search. However, looking at a total number of 20M simulations, performing always
1000 in parallel might yield a similar search quality compared to computing all
20M simulations sequentially on a single compute unit. It is therefore especially
important to ensure that the simulation rate (i.e., the number of simulations com-
putable per time unit) scales well with the number of compute units and thereby
the amount of parallel simulations. Given this, following our experimental results
(cf. Figure 4.15, page 67), further strength improvements appear to be still re-
alistic for systems with several thousand cores and several hundreds of compute
nodes.

Our comparison of move prediction systems for the game of Go demonstrated the
importance of the descriptive strength of the respective underlying probabilistic
models. By aligning the single models regarding their expressiveness, we observed
only minor differences in the prediction quality of either system, despite their
rather diverse computational intensity.

Move prediction systems that are trained on Go games played by strong human
players are beneficial for incorporating general knowledge about the specific search
domain of Go. We are interested in detecting situations in that general knowl-
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edge is insufficient or even misleading. We developed a method for automatically
detecting evaluation uncertainties that occur during MCTS searches that even
allows for stochastically localizing corresponding regions on the Go board. The
approach showed promising results for a number of sample positions and might
help for augmenting move prediction for very specific situations in the future.

A proper field of research on games is combinatorial game theory (CGT). This
area is about decomposing a game into subgames, solve such subgames indepen-
dently to afterwards combine the single subgames’ results to draw conclusions
about the entire game. Related research on Computer Go (e.g., [77][76]) faces the
problem of identifying subgames that can be solved independently. Our before
mentioned method for MCTS guided position analysis might serve as an extractor
for candidates of rather independent subgames in some cases. Note that CGT
uses a proper calculus that differs from computing or estimating minmax values.
Further integrating MCTS with CGT might be considered as a proper research
field.

7.3 Future Directions

We will now list a number of promising future directions from the current state
of our work:

• From our work on Distributed-Tree-Parallelization, a novel technique of par-
allelizing MCTS for hybrid shared and distributed memory systems, we
learned that the use of a single large distributed representation of the game
tree in memory is possible and allows for scaling to a large number of com-
pute cores. The use of a single game tree representation is in contrast to
another popular parallelization approach for distributed memory systems,
the Root-Parallelization (cf. Section 4.1.1, page 39). Both approaches might
benefit from different kinds of additional knowledge they obtain from ad-
ditional compute resources. While Distributed-Tree-Parallelization allows
for deeper searches by maintaining a single large tree representation, Root-
Parallelization can benefit from several parallel, more independent MCTS
searches that might prevent to get stuck in suboptimal branches of the search
space. As numerous modern MCTS based Go programs give a strong bias
towards exploitation when handling the exploration-exploitation tradeoff,
mistakenly concentrating the search on suboptimal branches becomes more
likely. This observation leads to the promising future direction of investigat-
ing potential combinations of both approaches, e.g., by performing several
Distributed-Tree-Parallelization searches in parallel and connecting them via
Root-Parallelization.
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• The scalability limitations of Distributed-Tree-Parallelization are apparently
induced by the RDMA technology or its kind of use in MPI distributions and
our implementation. Accordingly, it appears worth investigating the use of
other communication technologies. It might also be beneficial to improve the
communication by exploiting further techniques available with the Infiniband
interconnect, like its support for multicast operations. Doing this might
be part of more general investigations on quantifying potential performance
gains from handling network communication on lower levels, as an alternative
to using MPI.

• A further critical part of Distributed-Tree-Parallelization as well as of Root-
Parallelization is the synchronization of duplicated, frequently visited near
root nodes. Developing even better and statistically sound policies for con-
ducting node synchronization with the goal of minimizing communication
overheads and ideally keeping them close to constant for single communica-
tion peers will likely improve the scalability of either parallelization approach.

• Distributed-Tree-Parallelization is so far only implemented for Computer
Go. Although we looked for keeping the parallelization itself as general
as possible, it is considered worthwhile to extend empirical experiments to
further search domains. Hence, implementing Distributed-Tree-Paralleliza-
tion for other search domains poses another future direction.

• Our technique for detecting and localizing evaluation uncertainties in Go
positions during MCTS searches appears to be well suited to be used for
detecting further special phenomena that show up in games. In case of Go,
e.g., the same method should be adaptable to detect and localize potential
seki points. Hence, a more general tool for MCTS guided analysis of Go
positions might be obtainable.

• So far, our aforementioned approach is able to detect evaluation uncertainties
and can be used to identify critical regions in Go positions. For a particular
position, it should be possible to develop additional tiny local MCTS search
trees for each of such critical regions. Those could be faded in the principal
tree at corresponding places. The fade in might be realized similar to the
incorporation of AMAF statistics in the RAVE extension (cf. Section 3.3.1).
Furthermore, statistics stored with such local trees could be used for guiding
playouts in critical regions, thereby making them adaptive to local, critical
situations. We obtained promising results with the latter approach in early
experiments.

• It is often mentioned that the use of accelerator hardware like FPGAs or
GPGPUs should have a great potential for being used in the context of
MCTS. As currently used playout policies are however far from uniformly
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random, they do not offer many places that appear amenable for fine grained
parallelization. As a result, despite many attempts, none of the currently
strongest Go playing programs make use of accelerator hardware. A promis-
ing field for future research might be attempts to learn locally generalizable
knowledge from the data produced by MC simulations online, i.e., during
the actual MCTS search. This might involve common techniques of data
mining and machine learning like neural networks that can greatly benefit
from accelerator hardware already today. Hence, conducting research in this
field with the opportunities of accelerator hardware in mind might lead to a
next major step in Computer Go and related areas.
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[51] Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin. Monte-Carlo Simula-
tion Balancing in Practice. In Int. Conf. on Computers and Games, pages
81–92, 2010.
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