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Abstract

We present a complete solution for the mode-k subproblem of CP tensor decomposition
with missing data and Reproducing Kernel Hilbert Space (RKHS) constraints. We derive
the normal equations for the regularized least squares problem and prove that the system
matrix is symmetric positive definite (SPD). Crucially, we develop a matrix-free matrix-
vector product (MVP) that operates in O(qnr) time—scaling only with the number of
observed entries q, not the total tensor size N . We further introduce a Kronecker-structured
preconditioner that is efficiently invertible in O(n2r) time, ensuring rapid convergence of
the Preconditioned Conjugate Gradient (PCG) solver.

1 Problem Statement and Notation

Let T ∈ Rn1×···×nd be a d-way tensor with observed entries index by Ω. We focus on the update
for the k-th mode factor matrix Ak ∈ Rnk×r, which is constrained to lie in an RKHS defined
by a kernel K ∈ Rnk×nk .

1.1 Notation

� n := nk: Dimension of the active mode.

� M :=
∏

j ̸=k nj : Product of dimensions of all other modes.

� N := nM : Total number of entries in the tensor.

� q := |Ω|: Number of observed entries. We assume n, r < q ≪ N .

� T̄ ∈ Rn×M : The mode-k unfolding of T with unobserved entries set to 0.

� PΩ: The projection operator onto the observation set Ω. For a matrix X, (PΩ(X))i,m =
Xi,m if (i,m) ∈ Ω, and 0 otherwise.

� Z ∈ RM×r: The Khatri-Rao product of all other factor matrices:

Z = Ad ⊙ . . .⊙Ak+1 ⊙Ak−1 ⊙ . . .⊙A1.

� W ∈ Rn×r: The unknown weight matrix such that Ak = KW.
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1.2 The Optimization Problem

We minimize the squared error over observed entries plus an RKHS norm penalty:

min
W∈Rn×r

1

2

∥∥∥PΩ(KWZT − T̄)
∥∥∥2
F
+

λ

2
tr(WTKW). (1)

Setting the gradient with respect to W to zero yields the normal equations. Using the identity
vec(ABC) = (CT ⊗A) vec(B), the system for w = vec(W) is:[

(Z⊗K)TPΩ(Z⊗K) + λ(Ir ⊗K)
]

︸ ︷︷ ︸
Asys

w = (Ir ⊗K) vec(T̄Z). (2)

Lemma 1 (SPD Property). If K ≻ 0 and λ > 0, the system matrix Asys is symmetric positive
definite.

Proof. For any v ̸= 0, vTAsysv = ∥PΩ(KVZT)∥2F + λ tr(VTKV). Since K ≻ 0, the second
term is strictly positive.

2 The Matrix-Free MVP

Explicitly forming Asys would involve the N × N operator PΩ, costing O(N) or more. We
derive a matrix-free approach that scales only with q.

Theorem 1 (Efficient MVP). The product Asysw can be computed in O(qnr+n2r) time without
forming any O(N) object.

Proof. Let w = vec(W). The regularization term λ(Ir ⊗K)w = vec(λKW) costs O(n2r). For
the data term, let X = KWZT. We proceed in two steps:

1. Forward Pass (Gather): We need u = PΩ(Z⊗K)w. This vector contains the values
of X at observed indices. For each ℓ ∈ {1, . . . , q} with indices (iℓ,mℓ):

uℓ = (KWZT)iℓ,mℓ
= K(iℓ, :) ·W · Z(mℓ, :)

T.

Implementation:

� Precompute H = KΩW ∈ Rq×r, where KΩ contains rows of K for observed indices. Cost:
O(qnr).

� Compute dot products: uℓ =
∑r

j=1Hℓ,jZmℓ,j . Cost: O(qr).

2. Backward Pass (Scatter): We need Y = (Z ⊗K)Tu. This is the adjoint operation,
mapping the sparse observation vector u back to the parameter space:

Y =

q∑
ℓ=1

uℓ

(
K(iℓ, :)

T ⊗ Z(mℓ, :)
T
)
= KT

Ω (diag(u)ZΩ) .

Implementation:

� Scale rows of ZΩ by u: O(qr).

� Multiply by KT
Ω: O(qnr).

Total complexity is dominated by the two O(qnr) matrix multiplications.
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3 Kronecker-Structured Preconditioner

To accelerate PCG, we approximate PΩ ≈ αI (assuming uniform sampling), leading to the
preconditioner:

P = (Z⊗K)T(Z⊗K) + λ(Ir ⊗K) = (ZTZ)⊗K2 + λ(Ir ⊗K). (3)

Theorem 2 (Fast Inversion). P−1 can be applied in O(n2r + nr2) time.

Proof. Let K = VKΛVT
K and ZTZ = VZΣVT

Z . Substituting these into (3) and using the
mixed-product property, P diagonalizes in the basis VZ ⊗VK :

P = (VZ ⊗VK)
[
Σ⊗Λ2 + λ(I⊗Λ)

]
(VZ ⊗VK)T.

The eigenvalues are diagonal entries γij = σjµ
2
i + λµi. Inversion requires: 1. Transforming

the residual to the eigenbasis: R̃ = VT
KRVZ . 2. Scaling by 1/γij . 3. Transforming back:

Wnew = VKR̃VT
Z . All steps involve dense matrix multiplications of size n× r or n× n.

4 Algorithm and Complexity

Algorithm 1 Matrix-Free PCG for Mode-k RKHS Update

1: Input: K, Z, Ω, values tΩ, λ.
2: Setup: VK , µ← eig(K); VZ , σ ← eig(ZTZ).
3: RHS: B← MTTKRP(Ω, tΩ,Z) (sparse); b← vec(KB).
4: Loop: Run PCG.
5: MVP: v 7→ Asysv using Forward/Backward passes (Sec 3).
6: Precond: r 7→ P−1r using spectral scaling (Sec 4).
7: Output: W.

Table 1: Complexity Analysis (Dominant Terms)

Operation Complexity Frequency

Eigendecomposition of K O(n3) Once
Formation of ZTZ O(Mr2) Once
Matrix-Vector Product (MVP) O(qnr) Per Iteration
Preconditioner Apply O(n2r + nr2) Per Iteration

5 Conclusion

We have derived a solver that strictly avoids O(N) computations. By exploiting the sparse
structure of observations in the MVP and the dense Kronecker structure in the preconditioner,
we achieve a highly efficient iteration cost of O(qnr), making this approach suitable for large-
scale tensor completion.
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