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Abstract

We prove that the Φ4
3 measure µ on the three-dimensional torus T3 is mutually singular

with respect to its pushforward (Tψ)∗µ under any non-zero smooth shift ψ. The proof relies

on the construction of a separating event using a renormalised cubic observable at super-

exponential scales. We rigorously establish that while the observable vanishes for µ, the shift
induces a deterministic drift in the linear counterterm that diverges in probability, driving

the singularity.

1 Problem Statement

Let T3 be the three-dimensional unit torus and let µ be the Φ4
3 measure on the space of distri-

butions D′(T3). Let ψ ∈ C∞(T3) be a non-zero smooth function. The shift map is de�ned as
Tψ(Φ) = Φ + ψ. We prove that µ and (Tψ)∗µ are mutually singular.

2 Theorem

Theorem 1. For every non-zero ψ ∈ C∞(T3), the measures µ and (Tψ)∗µ are mutually singular

(µ ⊥ (Tψ)∗µ).

Proof. 1. Exact De�nitions and Constants. To invoke the results of Hairer [1] rigorously,
we explicitly adopt the de�nitions used therein. Let ρ ∈ C∞

c (R3) be a smooth, even molli�er
with

∫
ρ = 1. Let a, b be the speci�c renormalisation constants associated with this molli�er as

de�ned in [1, Eq. 1.1]. A crucial property of the Φ4
3 theory is that the linear mass renormalization

constant b is non-zero (b ̸= 0).
We de�ne a sequence of super-exponentially small scales:

εn = exp(−en), n ∈ N. (1)

Let Φn = Φ ∗ ρεn and ψn = ψ ∗ ρεn , where ρε(x) = ε−3ρ(x/ε).
We de�ne the renormalised cubic observable Xn(f) for a test function f ∈ C∞(T3):

Xn(f) = e−3n/4
〈
Φ3
n − C1(εn)Φn − C2(εn)Φ, f

〉
. (2)

The coe�cients C1, C2 are de�ned exactly as:

C1(εn) =
3a

εn
, C2(εn) = 9b log(ε−1

n ). (3)

With our choice of scale εn, we have the exact relation C2(εn) = 9ben.

2. The Separating Event. We de�ne the event Af as:

Af =
{
Φ ∈ D′(T3) : lim

n→∞
Xn(f)(Φ) = 0

}
. (4)

The following lemma is a direct consequence of Hairer's main result.
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Lemma 2 (Hairer [1], Thm 1.1). For any f ∈ C∞(T3), µ(Af ) = 1.

3. Analysis of the Shifted Measure. We claim that (Tψ)∗µ(Af ) = 0. This is equivalent
to showing that for µ-almost every Φ, the shifted �eld Φ+ψ does not belong to Af . Evaluating
Xn(f) on the shifted �eld Φ+ ψ:

Xn(f)(Φ + ψ) = e−3n/4
〈
(Φn + ψn)

3 − C1(εn)(Φn + ψn)− C2(εn)(Φ + ψ), f
〉

(5)

= Xn(f)(Φ) +Rn(Φ, ψ). (6)

We expand the cubic term and group the result to isolate the Wick-ordered square : Φ2
n : =

Φ2
n − 1

3C1(εn) = Φ2
n − aε−1

n .

Rn(Φ, ψ) = e−3n/4⟨3(Φ2
n − aε−1

n )ψn, f⟩︸ ︷︷ ︸
Y

(1)
n

(Quadratic Fluctuation) (7)

+ e−3n/4⟨3Φnψ2
n, f⟩︸ ︷︷ ︸

Y
(2)
n

(Linear Fluctuation) (8)

+ e−3n/4⟨ψ3
n, f⟩︸ ︷︷ ︸

Zn

− e−3n/4C2(εn)⟨ψ, f⟩︸ ︷︷ ︸
Drift

. (9)

4. Control of Fluctuations.

Lemma 3 (Tightness of Fluctuations). For any smooth f, ψ, the random terms Y
(1)
n and Y

(2)
n

converge to 0 in probability as n→ ∞ with respect to µ.

Proof. It is a standard result in the construction of the Φ4
3 measure (see [1] and references therein

regarding the regularity structures construction) that Φ and : Φ2 : exist as well-de�ned random
distributions in the Hölder-Besov spaces C−1/2−κ and C−1−κ respectively, for any κ > 0. For any
random distribution Z in Cα, the molli�ed sequence Z ∗ ρεn converges to Z in Cα−δ (and thus in
distribution when paired with smooth functions). Consequently, the sequences of scalar random
variables Un = ⟨: Φ2

n :, ψnf⟩ and Vn = ⟨Φn, ψ2
nf⟩ converge in distribution to ⟨: Φ2 :, ψf⟩ and

⟨Φ, ψ2f⟩. Convergent sequences are tight (bounded in probability). Since Y
(1)
n = e−3n/4Un and

Y
(2)
n = e−3n/4Vn, and the factor e−3n/4 vanishes deterministically, the products converge to 0 in

probability.

5. The Deterministic Drift. The behavior of the shifted observable is dominated by the
linear counterterm C2(εn). Substituting C2(εn) = 9ben:

Driftn = −e−3n/4(9ben)⟨ψ, f⟩ = −9ben/4⟨ψ, f⟩. (10)

Since ψ is non-zero and b ̸= 0, we choose f = ψ (which is smooth). Then ⟨ψ, f⟩ = ∥ψ∥2L2 > 0.
For this choice, the drift term diverges:

lim
n→∞

|Driftn| = ∞. (11)

6. Conclusion. Combining these results, we have:

Xn(f)(Φ + ψ) = Xn(f)(Φ)︸ ︷︷ ︸
→0 a.s.

+Y (1)
n + Y (2)

n︸ ︷︷ ︸
→0 in prob.

+ Zn︸︷︷︸
→0

− 9ben/4⟨ψ, f⟩︸ ︷︷ ︸
→−∞

. (12)

Consequently, |Xn(f)(Φ + ψ)| → ∞ in probability with respect to µ. This implies that the
measure of the set where the limit is 0 must be 0:

(Tψ)∗µ(Af ) = µ
({

Φ : lim
n→∞

Xn(f)(Φ + ψ) = 0
})

(13)

≤ µ
(
lim inf
n→∞

{|Xn(f)(Φ + ψ)| ≤ 1}
)

(14)

≤ lim
n→∞

µ(|Xn(f)(Φ + ψ)| ≤ 1) = 0. (15)
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Since µ(Af ) = 1 and (Tψ)∗µ(Af ) = 0, the measures are mutually singular.
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