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Abstract
Let F be a non-archimedean local field. For generic irreducible admissible rep-

resentations Π of GLn+1(F ) and π of GLn(F ), we construct Whittaker functions
W ∈ W(Π, ψ−1) and V ∈ W(π, ψ) such that the twisted local Rankin–Selberg in-
tegral

I(s,W, V ) =
∫

Nn\ GLn(F )
W (diag(g, 1)uQ)V (g) | det g|s− 1

2 dg

is absolutely convergent and nonzero for all s ∈ C.

1 Notation and setup
Let F be a non-archimedean local field with ring of integers o, maximal ideal p, and residue
field of size q. For r ≥ 1, let Nr ⊂ GLr(F ) be the subgroup of upper-triangular unipotent
matrices.

Fix a nontrivial additive character ψ : F → C×, and view it as a character of Nr by

ψ(u) = ψ

(
r−1∑
i=1

ui,i+1

)
.

Let c = c(ψ) ≥ 0 be such that ψ is trivial on p c (and nontrivial on p c−1 if c > 0); only
triviality on p c will be used.

Let Π be a generic irreducible admissible representation of GLn+1(F ) realized in its ψ−1-
Whittaker model W(Π, ψ−1), and let π be a generic irreducible admissible representation of
GLn(F ) realized in W(π, ψ).

Fix Q ∈ F× and set
uQ := In+1 +QEn,n+1 ∈ GLn+1(F ),

where En,n+1 is the standard matrix unit.
Measures. Fix Haar measures dg̃ on GLn(F ) and du onNn(F ). Let dg denote the associated
quotient measure on Nn\ GLn(F ), characterized by∫

GLn(F )
Φ(g̃) dg̃ =

∫
Nn\ GLn(F )

∫
Nn(F )

Φ(ug̃) du dg (Φ ∈ C∞
c (GLn(F ))). (1)
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For W ∈ W(Π, ψ−1) and V ∈ W(π, ψ) define the twisted Rankin–Selberg integral

I(s,W, V ) =
∫

Nn\ GLn(F )
W (diag(g, 1)uQ)V (g) | det g|s− 1

2 dg. (2)

2 Mirabolic restriction
Let Pn+1 ⊂ GLn+1(F ) be the mirabolic subgroup: matrices whose last row is (0, . . . , 0, 1).
Write P := Pn+1 and N := Nn+1 ∩ P .

Definition 1 (Induced model). We realize IndP
N(ψ−1) as the space of locally constant func-

tions Φ : P → C such that

Φ(np) = ψ−1(n)Φ(p) (n ∈ N, p ∈ P ),

and whose support is compact modulo N (equivalently, the image of supp(Φ) in N\P is
compact).

Lemma 1 (Mirabolic restriction / Kirillov model). If Π is generic, then the restriction map

resP : W(Π, ψ−1) −→ IndP
N(ψ−1)

has image containing C∞
c (N\P ) (viewed as functions on the quotient). Equivalently, any

compactly supported, locally constant function on N\P can be realized (as in Definition 1)
by the restriction of some Whittaker function W ∈ W(Π, ψ−1).

Remark 1. This is the standard Kirillov model statement for GLn+1 (Bernstein–Zelevinsky;
Jacquet–Piatetski-Shapiro–Shalika). We only use the stated consequence: the ability to
prescribe compactly supported data on the mirabolic quotient.

3 Choice of V and a compact open subset of Nn\ GLn
Choose a nonzero Whittaker functional λ : π → C, so λ(π(u)w) = ψ(u)λ(w) for all u ∈ Nn.
Pick v ∈ π with λ(v) ̸= 0. Since π is smooth, there exists a compact open subgroup
K ⊂ GLn(F ) such that v is K–fixed.

We now choose a smaller compact open subgroup Kn with three properties: (i) it fixes
v, (ii) it lies in GLn(o) (so | det | ≡ 1 on it), and (iii) ψ is trivial on Nn ∩Kn. Set

Kn :=
(
K ∩ GLn(o)

)
∩
(
1 + p cMn(o)

)
.

Then Kn is compact open, v is Kn–fixed, Kn ⊂ GLn(o), and any u ∈ Nn ∩ Kn has all
superdiagonal entries in p c, hence ψ(u) = 1 by the choice of c(ψ).

Define
V (g) := λ(π(g)v).
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Then for u ∈ Nn,
V (ug) = λ(π(u)π(g)v) = ψ(u)V (g),

so V ∈ W(π, ψ). Moreover V is right Kn–invariant, hence V (k) = V (1) = λ(v) ̸= 0 for all
k ∈ Kn.

Define the compact open subset

U := (Nn ∩Kn)\Kn ⊂ Nn\ GLn(F ).

Since Kn ⊂ GLn(o), we have | det k| = 1 for k ∈ Kn, hence | det g| = 1 for g ∈ U .

4 Identifying the mirabolic quotient with Nn\ GLn
Lemma 2 (Mirabolic quotient equals Nn\ GLn). Write elements of P in block form

p =
(
A b
0 1

)
, A ∈ GLn(F ), b ∈ F n.

Then the map
θ : N\P −→ Nn\ GLn(F ), Np 7−→ NnA

is a well-defined homeomorphism of locally compact totally disconnected spaces, with inverse

θ−1(NnA) = N

(
A 0
0 1

)
.

Proof. Let p =
(
A b
0 1

)
∈ P , A ∈ GLn(F ), b ∈ F n.

Well-defined. Any element of N has the form
(
u x
0 1

)
with u ∈ Nn and x ∈ F n. Then

(
u x
0 1

)(
A b
0 1

)
=
(
uA ub+ x
0 1

)
,

so the upper-left block changes from A to uA. Hence the class NnA ∈ Nn\ GLn(F ) depends
only on the coset Np ∈ N\P , proving θ is well-defined.

Surjectivity. Given A ∈ GLn(F ), the element
(
A 0
0 1

)
∈ P maps to NnA.

Injectivity. Suppose θ(Np) = θ(Np′) with p =
(
A b
0 1

)
and p′ =

(
A′ b′

0 1

)
. Then

NnA = NnA
′, so A′ = uA for some u ∈ Nn. Let x := b′ − ub. Then

(
u x
0 1

)
∈ N and(

u x
0 1

)
p = p′, so Np = Np′.
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Topology. Define θ−1(NnA) = N

(
A 0
0 1

)
. This is well-defined because replacing A by

uA with u ∈ Nn corresponds to left-multiplying by diag(u, 1) ∈ N . Both θ and θ−1 are
induced by continuous block projection/embedding maps, hence are continuous. Since they
are inverse bijections, θ is a homeomorphism.

5 Construction of W
For g ∈ GLn(F ), note that diag(g, 1) ∈ P and uQ ∈ P (both have last row (0, . . . , 0, 1)),
hence

diag(g, 1)uQ ∈ P for all g ∈ GLn(F ). (3)
Define the compact subset of P

Ω := {diag(k, 1)uQ : k ∈ Kn} ⊂ P,

and let Ω ⊂ N\P be its image.

Lemma 3. Under θ from Lemma 2, the subset Ω corresponds to U = (Nn ∩ Kn)\Kn ⊂
Nn\ GLn(F ). In particular, Ω is compact open.

Proof. For k ∈ Kn, the element diag(k, 1)uQ has upper-left block k, so θ(N diag(k, 1)uQ) =
Nnk. Thus θ(Ω) = U . Since U is compact open and θ is a homeomorphism, Ω is compact
open.

5.1 Cutoff function on N\P
Define

f := λ(v)−1 · 1Ω ∈ C∞
c (N\P ).

5.2 An explicit induced vector f̃ ∈ IndPN(ψ−1)
We define f̃ : P → C as an induced-model vector supported on NΩ.

Definition 2. Define f̃ : P → C by

f̃(p) =

ψ
−1(n)λ(v)−1, if p = nω for some n ∈ N, ω ∈ Ω,

0, if p /∈ NΩ.

Lemma 4 (Well-definedness and membership in the induced model). The function f̃ of
Definition 2 is well-defined, lies in IndP

N(ψ−1) in the sense of Definition 1, and satisfies:

1. supp(f̃) ⊂ NΩ and the image of supp(f̃) in N\P equals Ω;

2. for all k ∈ Kn, we have f̃(diag(k, 1)uQ) = λ(v)−1.
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Proof. Well-definedness. Suppose p = nω = n′ω′ with n, n′ ∈ N and ω, ω′ ∈ Ω. Write ω =
diag(k, 1)uQ and ω′ = diag(k′, 1)uQ with k, k′ ∈ Kn. Then n diag(k, 1)uQ = n′ diag(k′, 1)uQ,
so right-multiplying by u−1

Q gives

n diag(k, 1) = n′ diag(k′, 1).

Taking upper-left blocks shows that Nnk = Nnk
′ in Nn\ GLn(F ). Since k, k′ ∈ Kn, this

implies k′ = uk for some u ∈ Nn ∩ Kn. Hence diag(k′, 1) = diag(u, 1) diag(k, 1) with
diag(u, 1) ∈ N , and therefore

n′−1n = diag(u, 1) ∈ N.

By the choice ofKn, we have u ∈ Nn∩Kn ⊂ ker(ψ), hence ψ(u) = 1 and so ψ−1(n) = ψ−1(n′).
Thus the value ψ−1(n)λ(v)−1 does not depend on the chosen decomposition p = nω.

Equivariance and support. If m ∈ N and p = nω ∈ NΩ, then mp = (mn)ω ∈ NΩ and

f̃(mp) = ψ−1(mn)λ(v)−1 = ψ−1(m) f̃(p).

If p /∈ NΩ, then mp /∈ NΩ as well (since NΩ is left N -stable), so f̃(mp) = 0 = ψ−1(m)f̃(p).
Thus f̃ ∈ IndP

N(ψ−1). Moreover supp(f̃) ⊂ NΩ by definition, and its image in N\P is
exactly Ω.

Values on Ω. If k ∈ Kn, then diag(k, 1)uQ ∈ Ω, so taking n = 1 gives f̃(diag(k, 1)uQ) =
λ(v)−1.

5.3 Choose W ∈ W(Π, ψ−1) matching f̃ on the mirabolic
By Lemma 1, choose W ∈ W(Π, ψ−1) such that

W (p) = f̃(p) for all p ∈ P. (4)

Lemma 5 (Explicit values and support of W on P ). With W chosen by (4) we have:

1. W (p) = 0 for all p ∈ P whose class in N\P lies outside Ω (equivalently, p /∈ NΩ);

2. for all k ∈ Kn, W (diag(k, 1)uQ) = λ(v)−1.

Proof. Immediate from (4) and Lemma 4.

6 Support and descent to the quotient
Corollary 6. For g ∈ GLn(F ),

W (diag(g, 1)uQ) ̸= 0 ⇐⇒ Nng ∈ U = (Nn ∩Kn)\Kn.

Proof. By (3) and Lemma 5(1), W (diag(g, 1)uQ) ̸= 0 iff the class of diag(g, 1)uQ in N\P
lies in Ω. By Lemma 3 this is equivalent to Nng ∈ U .
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Lemma 7 (Well-definedness on the quotient). For each s ∈ C, the function

Fs(g) := W (diag(g, 1)uQ)V (g) | det g|s− 1
2

is left Nn(F )-invariant. Hence the integrand in (2) is well-defined as a function on Nn\ GLn(F ).

Proof. Let u ∈ Nn(F ). Since diag(u, 1) ∈ N ⊂ P , Whittaker equivariance gives

W (diag(ug, 1)uQ) = W (diag(u, 1) diag(g, 1)uQ) = ψ−1(u)W (diag(g, 1)uQ).

On the other hand, V (ug) = ψ(u)V (g) and det(ug) = det(g). Multiplying, the ψ(u) and
ψ−1(u) factors cancel, so Fs(ug) = Fs(g).

7 Evaluation of the integral and the volume computa-
tion

By Corollary 6, the integrand in (2) is supported on the compact set U . Hence the integral
converges absolutely for all s ∈ C.

On U we may represent the class of g by some k ∈ Kn (by Lemma 7, the value of
the integrand does not depend on the representative). Then, using Lemma 5(2), right Kn–
invariance of V , and | det k| = 1, we get

W (diag(g, 1)uQ)V (g) | det g|s− 1
2 = W (diag(k, 1)uQ)V (k) | det k|s− 1

2 = λ(v)−1 · λ(v) · 1 = 1.

Therefore
I(s,W, V ) =

∫
U

1 dg = vol(U), (5)

independent of s.
Deriving vol(U) = vol(Kn)/ vol(Nn ∩ Kn). Apply (1) to Φ = 1Kn ∈ C∞

c (GLn(F )). Then
the left-hand side equals vol(Kn). For a fixed coset g ∈ Nn\ GLn(F ), consider the inner
integral ∫

Nn(F )
1Kn(ug̃) du.

If g ∈ U , choose a representative g̃ = u0k with u0 ∈ Nn and k ∈ Kn. Then

{u ∈ Nn : ug̃ ∈ Kn} = {u ∈ Nn : uu0k ∈ Kn} = {u ∈ Nn : uu0 ∈ Kn} = (Nn ∩Kn)u−1
0 ,

a left translate of Nn ∩ Kn. Hence the inner integral equals vol(Nn ∩ Kn). If g /∈ U , then
Nng̃ ∩Kn = ∅, so the inner integral is 0. Therefore (1) gives

vol(Kn) =
∫

Nn\ GLn(F )

(∫
Nn(F )

1Kn(ug̃) du
)
dg = vol(Nn ∩Kn)

∫
U

1 dg = vol(Nn ∩Kn) vol(U),

so
vol(U) = vol(Kn)

vol(Nn ∩Kn) ∈ (0,∞). (6)

Combining (5) and (6) yields I(s,W, V ) ̸= 0 for all s.
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8 Conclusion
We have constructed V ∈ W(π, ψ) and W ∈ W(Π, ψ−1) such that I(s,W, V ) = vol(U) ∈
(0,∞) for all s ∈ C. Therefore the answer is Yes.

Remark 2. The argument did not use any special property of Q beyond Q ∈ F×. In
particular it applies to the choice of Q specified in the problem statement (e.g. a generator
of q−1).
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