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1 Problem statement (as used in the proof)

Let λ = (λ1 > · · · > λn ≥ 0) have distinct parts and let

Ω = Sn(λ) = {all permutations of the parts of λ}.

Assume λ is restricted in the sense of the problem statement so that the q = 1 specialization
of the nonsymmetric interpolation family is non-degenerate at the chosen evaluation point
x: for every µ ∈ Ω, the polynomial F ∗

µ(·; 1, t) exists and the values F ∗
µ(x; 1, t) are finite.

(Equivalently: the interpolation nodes defining F ∗
µ do not collide at q = 1 in the orbit Ω for

the chosen parameters.)
Assume moreover that F ∗

µ0
(x; 1, t) ̸= 0 for at least one µ0 ∈ Ω (e.g. for the identity-

permutation state). This nonvanishing holds for generic x, and is automatic under standard
normalizations of interpolation Macdonald polynomials (e.g. M0(x; q, t) = 1 in the conven-
tions of [1]).

We define a continuous-time Markov chain on Ω and prove that its stationary distribution
is

π(µ) ∝ F ∗
µ(x; 1, t).

2 Formal rates, CTMC generator conditions, and irre-

ducibility

Definition 1 (Formal rates). For µ ∈ Ω and i ∈ {1, . . . , n− 1} let siµ be µ with entries at
positions i and i+ 1 swapped. Define a matrix Q on Ω by

Q(µ, siµ) =


xi − txi+1

xi − xi+1

, µi < µi+1,

txi − xi+1

xi − xi+1

, µi > µi+1,

(1)

and Q(µ, µ) = −
∑n−1

i=1 Q(µ, siµ), with all other Q(µ, ν) = 0.

Remark 1 (Analytic conditions on (x, t)). For the expressions in (1) and in Lemma 1 to
make sense, it suffices to assume:
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(a) (no poles) xi ̸= xi+1 for all i and xi ̸= txi+1 and txi ̸= xi+1 for all i.

To interpret Q as a CTMC generator we additionally assume:

(b) (nonnegative rates) Q(µ, siµ) ≥ 0 for all allowed moves (equivalently, for each fixed i,
the numerator in (1) has the same sign as xi − xi+1).

For positivity of the stationary probability distribution, we will optionally assume:

(c) (positivity propagation) (xi − txi+1)(txi − xi+1) > 0 for all i.

A simple sufficient regime is x1 > · · · > xn > 0 and xi > txi+1 for all i (in particular, when
t ≥ 1 this implies (a)–(c)).

Remark 2 (When Q is a CTMC generator). Under (b) of Remark 1, the off-diagonal entries
Q(µ, siµ) are nonnegative and Q(µ, µ) is the negative row sum; hence Q is the generator of a
continuous-time Markov chain on the finite state space Ω. Without (b), Q should be viewed
only as a formally defined operator on functions on Ω.

Remark 3 (Irreducibility under strict positivity). If, in addition to (a), we assume the strict
inequalities

xi − txi+1

xi − xi+1

> 0 and
txi − xi+1

xi − xi+1

> 0 ∀i ∈ {1, . . . , n− 1}, (2)

then every adjacent swap occurs with strictly positive rate for every state µ. Since adjacent
transpositions generate Sn and Ω ≃ Sn, the CTMC is irreducible.

Remark 4. Note that (2) implies (a)–(c) of Remark 1.

3 The key input: the q = 1 adjacent-exchange relation

(division-free form)

Lemma 1 (Degenerate exchange relation, division-free). Assume (a) of Remark 1. Let
µ ∈ Ω and i ∈ {1, . . . , n− 1}. Then:

(i) if µi < µi+1, then

(txi − xi+1)F
∗
siµ

(x; 1, t) = (xi − txi+1)F
∗
µ(x; 1, t); (3)

(ii) if µi > µi+1, then

(xi − txi+1)F
∗
siµ

(x; 1, t) = (txi − xi+1)F
∗
µ(x; 1, t). (4)

Whenever F ∗
µ(x; 1, t) ̸= 0, these identities are equivalent to the ratio form obtained by dividing

both sides.
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Lemma 2 (Nonvanishing propagation). Assume (a) of Remark 1. Then for every µ ∈ Ω
and every i ∈ {1, . . . , n− 1},

F ∗
µ(x; 1, t) = 0 ⇐⇒ F ∗

siµ
(x; 1, t) = 0.

Proof. Assume µi < µi+1 (the other case is symmetric). By (3),

(txi − xi+1)F
∗
siµ

= (xi − txi+1)F
∗
µ .

Under (a) we have txi − xi+1 ̸= 0 and xi − txi+1 ̸= 0, hence F ∗
siµ

= 0 iff F ∗
µ = 0.

Corollary 1. If F ∗
µ0
(x; 1, t) ̸= 0 for at least one µ0 ∈ Ω, then F ∗

µ(x; 1, t) ̸= 0 for all µ ∈ Ω.

Proof. By Lemma 2, nonvanishing is preserved under each adjacent transposition si. Since
Ω ≃ Sn is connected by adjacent transpositions, every µ can be reached from µ0 by such
moves, so F ∗

µ(x; 1, t) ̸= 0 for all µ.

Lemma 3 (Checkable bibliographic route to Lemma 1). Let Mu(x; q, t) denote the non-
symmetric interpolation Macdonald polynomials in the normalization of [1] (their Mu). In
[1, §3], see the displayed formula for Ti (the Demazure–Lusztig action) and the displayed
adjacent recursion for Musi (the display immediately following [1, Eq. (3.1)]). These dis-
played formulas imply an explicit rational scalar factor κi(u;x; q, t) relating Musi and Mu.
Specializing that explicit factor to q = 1 and translating notation Mu ↔ F ∗

µ yields (3)–(4).

Remark 5 (About the LRW simplification). Lemma 3 reduces Lemma 1 to a one-step
substitution of the displayed Demazure–Lusztig operator formula into the displayed adjacent
recursion in [1, §3], followed by a short algebraic simplification and the specialization q = 1.
We omit this algebra in the present note.

4 Positivity and probability measure

Lemma 4 (Positivity propagation). Assume (a) and (c) of Remark 1. Assume further that
F ∗
µ0
(x; 1, t) > 0 for at least one state µ0 ∈ Ω. Then F ∗

µ(x; 1, t) > 0 for all µ ∈ Ω.

Proof. By Corollary 1, all weights are nonzero. Under (c), the coefficients in (3)–(4) have
the same sign, so along any adjacent transposition F ∗

siµ
and F ∗

µ have the same sign. Since
Ω is connected by adjacent transpositions and one state has positive value, all states have
positive value.

Definition 2 (Target probability measure). Assume (a) and (c) of Remark 1 and assume
F ∗
µ0
(x; 1, t) > 0 for at least one state µ0 ∈ Ω. By Lemma 4, all weights are strictly positive.

Define

Z :=
∑
ν∈Ω

F ∗
ν (x; 1, t) ∈ (0,∞), π(µ) :=

F ∗
µ(x; 1, t)

Z
.

3



5 Reversibility first for unnormalised weights, then for

the probability measure

Theorem 1 (Reversibility of the unnormalised weights). Assume (a)–(b) of Remark 1 so
that Q is a CTMC generator. Define w(µ) := F ∗

µ(x; 1, t) (not assumed positive). Then for
every µ ∈ Ω and every i ∈ {1, . . . , n− 1},

w(µ)Q(µ, siµ) = w(siµ)Q(siµ, µ).

In particular, the (possibly signed) measure w is reversible for Q.

Proof. Assume µi < µi+1 (the other case is symmetric). Multiplying (1) by (xi − xi+1) gives

(xi − xi+1)Q(µ, siµ) = xi − txi+1, (xi − xi+1)Q(siµ, µ) = txi − xi+1.

Using (3) and cancelling the common nonzero factor (xi − xi+1) yields w(µ)Q(µ, siµ) =
w(siµ)Q(siµ, µ). The case µi > µi+1 uses (4).

Remark 6 (Operator form of reversibility). Once π is defined, the detailed-balance identity
is equivalent to Q being self-adjoint in ℓ2(π), i.e. ⟨f,Qg⟩π = ⟨Qf, g⟩π for all functions f, g
on Ω.

Remark 7. The detailed-balance identity in Theorem 1 does not require assumption (c).
Assumption (c) is used only to ensure that the normalised weights define a probability dis-
tribution (positivity).

Theorem 2 (Stationary probability distribution and (conditional) uniqueness). Assume
(a)–(b) of Remark 1 and assume π is defined as in Definition 2. Then π is reversible and
hence stationary for the CTMC with generator Q. If moreover the strict-positivity condition
(2) holds, then the CTMC is irreducible and π is the unique stationary distribution. If (2)
fails, the CTMC may decompose into multiple closed communicating classes; in that case π
is still stationary (and reversible), but stationary distributions need not be unique.

Proof. By Theorem 1, the unnormalised weights w(µ) = F ∗
µ(x; 1, t) satisfy detailed balance

with Q. Dividing the detailed-balance identity by Z on both sides shows the same identity
holds for π(µ) = w(µ)/Z. Hence π is reversible and therefore stationary.

Under (2) the CTMC is irreducible by Remark 3, and in a finite irreducible CTMC the
stationary distribution is unique.

Corollary 2 (Restriction to a closed class). Let C ⊆ Ω be a closed communicating class for
the CTMC generated by Q, and let QC be the restricted generator

QC(µ, ν) := Q(µ, ν) (µ, ν ∈ C).

Then the renormalised restriction

πC(µ) :=
π(µ)∑
η∈C π(η)

(µ ∈ C)

is stationary for the restricted CTMC with generator QC.

Proof. Since πQ = 0 and C is closed, the balance equations for states in C involve only
transitions within C, i.e. π|C QC = 0. Renormalising preserves stationarity.
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6 Optional: clean “final theorem” under strict positiv-

ity

If you prefer a single clean final statement, you can combine the hypotheses as follows (using
Remark 4):

Theorem 3 (Stationarity and uniqueness under strict positivity). Assume (2) and assume
F ∗
µ0
(x; 1, t) > 0 for at least one µ0 ∈ Ω. Then

π(µ) =
F ∗
µ(x; 1, t)∑

ν∈Ω F ∗
ν (x; 1, t)

is a well-defined stationary distribution of the CTMC with generator Q. Moreover, the chain
is irreducible and π is the unique stationary distribution.

7 Role of restrictedness (kept logically honest)

The detailed-balance verification uses only the exchange identity (Lemma 1) and the analytic
assumptions on (x, t) ensuring rates are well-defined. Restrictedness of λ is used only to
justify the non-degeneracy of the q = 1 specialization at the chosen evaluation point x
(existence/finite values of F ∗

µ(x; 1, t) for all µ ∈ Ω). If you have a precise reference formulating
this non-degeneracy for restricted λ at q = 1, it should be cited in the problem statement
section.
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