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1 Problem statement (as used in the proof)
Let A = (A > -+ > A, > 0) have distinct parts and let
Q= S5,(\) = {all permutations of the parts of \}.

Assume A\ is restricted in the sense of the problem statement so that the ¢ = 1 specialization
of the nonsymmetric interpolation family is non-degenerate at the chosen evaluation point
x: for every p € €, the polynomial F;(-;1,t) exists and the values F};(x;1,t) are finite.
(Equivalently: the interpolation nodes defining F . do not collide at ¢ = 1 in the orbit 2 for
the chosen parameters.)

Assume moreover that Fy (v;1,t) # 0 for at least one pg € Q (e.g. for the identity-
permutation state). This nonvanishing holds for generic x, and is automatic under standard
normalizations of interpolation Macdonald polynomials (e.g. Mp(z;q,t) = 1 in the conven-
tions of [1]).

We define a continuous-time Markov chain on €2 and prove that its stationary distribution
is

m(p) o< Fi(x;1,¢t).

2 Formal rates, CTMC generator conditions, and irre-
ducibility

Definition 1 (Formal rates). For p € Q and i € {1,...,n — 1} let s;u be p with entries at
positions 1 and i + 1 swapped. Define a matrixz () on €2 by

T; — T4
#7 i < iy1,
. i Tit1
Q(,U, SZM) - tIZ — T (1)
——  Mi > Mg,
Ti — Tiy1

and Q(u, 11) = — 3207 Q(u, sips), with all other Q(p,v) = 0.

Remark 1 (Analytic conditions on (z,t)). For the expressions in and in Lemma 1| to
make sense, it suffices to assume:



(a) (mno poles) x; # w11 for all i and x; # tx;1 and tx; # x4y for all i.
To interpret Q as a CTMC generator we additionally assume:

(b) (nonnegative rates) Q(u, s;p) > 0 for all allowed moves (equivalently, for each fized i,
the numerator in has the same sign as x; — Tiy1).

For positivity of the stationary probability distribution, we will optionally assume:
(c) (positivity propagation) (z; — tx;1)(tz; — xi41) > 0 for all i.

A simple sufficient regime is xy > -+ > x, > 0 and x; > tx;yq for all i (in particular, when
t > 1 this implies (a)—(c)).

Remark 2 (When @) is a CTMC generator). Under (b) of Remark[d] the off-diagonal entries
Q(p, sipt) are nonnegative and Q(p, 1) is the negative row sum; hence Q) is the generator of a
continuous-time Markov chain on the finite state space Q. Without (b), @ should be viewed
only as a formally defined operator on functions on Q.

Remark 3 (Irreducibility under strict positivity). If, in addition to (a), we assume the strict
inequalities

Ty — twig tx; — T

>0 and

>0 Vied{l,...,n—1}, 2
Ti — Ti+1 Ti — Ti41 ! { " } ()

then every adjacent swap occurs with strictly positive rate for every state . Since adjacent
transpositions generate S, and 2 ~ S, the CTMC is irreducible.

Remark 4. Note that implies (a)~(c) of Remark[1]

3 The key input: the ¢ = 1 adjacent-exchange relation
(division-free form)

Lemma 1 (Degenerate exchange relation, division-free). Assume (a) of Remark [1] Let
weQandie{l,...,n—1}. Then:

(1) if pi < piga, then

(tw; — wi1) Fy (23 1,8) = (@5 — @) F (a5 1,0); (3)
(ii) of p; > piy1, then

(zi — twi) FY (25 1,t) = (b — @4q0) B (251, 1). (4)

Whenever Flf(x, 1,t) # 0, these identities are equivalent to the ratio form obtained by dividing
both sides.



Lemma 2 (Nonvanishing propagation). Assume (a) of Remark [l Then for every p € Q
and every i € {1,...,n — 1},

Fir;1,t) =0 <= F; (v;1,t)=0.
Proof. Assume p; < pivq (the other case is symmetric). By ,

(tr; — xip1) Fs*i = (i — tzit1) F;

"
Under (a) we have tr; — ;41 # 0 and x; — tz;q # 0, hence Fy =0 iff F; = 0. O
Corollary 1. If F; (x;1,t) # 0 for at least one g € 2, then F;(z;1,t) # 0 for all p € Q.

Proof. By Lemma [2] nonvanishing is preserved under each adjacent transposition s;. Since
Q) ~ S, is connected by adjacent transpositions, every p can be reached from ug by such
moves, so F;(x;1,1) # 0 for all p. m

Lemma 3 (Checkable bibliographic route to Lemma [1). Let M, (z;q,t) denote the non-
symmetric interpolation Macdonald polynomials in the normalization of [1] (their M, ). In
[, §3], see the displayed formula for T; (the Demazure—Lusztig action) and the displayed
adjacent recursion for M,s, (the display immediately following [1, Eq. (3.1)]). These dis-
played formulas imply an explicit rational scalar factor k;(u;x;q,t) relating M,s, and M,.
Specializing that explicit factor to ¢ =1 and translating notation M, <> F; yields f.

Remark 5 (About the LRW simplification). Lemma @ reduces Lemma |1l to a one-step
substitution of the displayed Demazure—Lusztig operator formula into the displayed adjacent
recursion in [1l, §3], followed by a short algebraic simplification and the specialization q = 1.
We omit this algebra in the present note.

4 Positivity and probability measure

Lemma 4 (Positivity propagation). Assume (a) and (c) of Remark[ll Assume further that
Fr (z;1,t) > 0 for at least one state jig € 2. Then F;(z;1,t) > 0 for all i € Q.

Proof. By Corollary [1], all weights are nonzero. Under (c), the coefficients in (3)—(4]) have
the same sign, so along any adjacent transposition Fy , and F}; have the same sign. Since
Q) is connected by adjacent transpositions and one state has positive value, all states have

positive value. O

Definition 2 (Target probability measure). Assume (a) and (c) of Remark[1] and assume
Fr(z;1,t) > 0 for at least one state jig € Q. By Lemmaly, all weights are strictly positive.
Define
Fi(x;1,1)
Z = Frx; 1.t 0 =
SR € 00) )=



5 Reversibility first for unnormalised weights, then for
the probability measure

Theorem 1 (Reversibility of the unnormalised weights). Assume (a)—(b) of Remark 1| so
that Q is a CTMC generator. Define w(u) := F;(x;1,t) (not assumed positive). Then for
every p € Q and every i € {1,...,n — 1},

w(p) Qs sipt) = w(sip) Q(sift, ).
In particular, the (possibly signed) measure w is reversible for Q.

Proof. Assume p; < p;11 (the other case is symmetric). Multiplying (1)) by (x; — z;11) gives

(25 — @ig1) Q(p, 8ift) = T3 — txiqa, (25 — @ig1) Q(sipt, 1) = ta; — Tiqq.
Using and cancelling the common nonzero factor (x; — x;41) yields w(p)Q(p, sip) =
w(s;p)Q(sip, p). The case p; > iy uses (4). O
Remark 6 (Operator form of reversibility). Once 7 is defined, the detailed-balance identity
is equivalent to Q being self-adjoint in (*(7), i.e. {f,Qg)x = (Qf,g)x for all functions f,g
on Q.

Remark 7. The detailed-balance identity in Theorem |1 does not require assumption (c).
Assumption (c) is used only to ensure that the normalised weights define a probability dis-
tribution (positivity).

Theorem 2 (Stationary probability distribution and (conditional) uniqueness). Assume
(a)~(b) of Remark [l and assume w is defined as in Definition[d Then 7 is reversible and
hence stationary for the CTMC with generator Q. If moreover the strict-positivity condition
holds, then the CTMC' is irreducible and m is the unique stationary distribution. If
fails, the CTMC may decompose into multiple closed communicating classes; in that case ™
is still stationary (and reversible), but stationary distributions need not be unique.

Proof. By Theorem , the unnormalised weights w(p) = F};(z;1,t) satisfy detailed balance
with . Dividing the detailed-balance identity by Z on both sides shows the same identity
holds for m(u) = w(p)/Z. Hence 7 is reversible and therefore stationary.

Under the CTMC is irreducible by Remark |3] and in a finite irreducible CTMC the
stationary distribution is unique. O]

Corollary 2 (Restriction to a closed class). Let C' C Q be a closed communicating class for
the CTMC generated by Q, and let Q€ be the restricted generator

Q% (1, v) = Qu,v)  (wrveC)

Then the renormalised restriction

(1)

mo(p) = <w———= (hel)
ZTIGC W(n)

is stationary for the restricted CTMC with generator Q.

Proof. Since w() = 0 and C is closed, the balance equations for states in C' involve only
transitions within C, i.e. 7|c Q¢ = 0. Renormalising preserves stationarity. [
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6 Optional: clean “final theorem” under strict positiv-
ity
If you prefer a single clean final statement, you can combine the hypotheses as follows (using

Remark :

Theorem 3 (Stationarity and uniqueness under strict positivity). Assume and assume
Fy (z;1,t) > 0 for at least one jig € 2. Then

Fr(x;1,t)
() = =+
ZVEQ F:(I}, 17 t)

1s a well-defined stationary distribution of the C'TMC with generator Q). Moreover, the chain
15 wrreducible and m is the unique stationary distribution.

7 Role of restrictedness (kept logically honest)

The detailed-balance verification uses only the exchange identity (Lemma and the analytic
assumptions on (z,t) ensuring rates are well-defined. Restrictedness of A is used only to
justify the non-degeneracy of the ¢ = 1 specialization at the chosen evaluation point x
(existence/finite values of F;(x;1,t) for all u € Q). If you have a precise reference formulating
this non-degeneracy for restricted A at ¢ = 1, it should be cited in the problem statement
section.
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