

Proof for Question 3 (Ninth Revision)

Dietmar Wolz, Ingo Althöfer

1 Problem statement (as used in the proof)

Let $\lambda = (\lambda_1 > \dots > \lambda_n \geq 0)$ have distinct parts and let

$$\Omega = S_n(\lambda) = \{\text{all permutations of the parts of } \lambda\}.$$

Assume λ is *restricted* in the sense of the problem statement *so that* the $q = 1$ specialization of the nonsymmetric interpolation family is non-degenerate at the chosen evaluation point x : for every $\mu \in \Omega$, the polynomial $F_\mu^*(\cdot; 1, t)$ exists and the values $F_\mu^*(x; 1, t)$ are finite. (Equivalently: the interpolation nodes defining F_μ^* do not collide at $q = 1$ in the orbit Ω for the chosen parameters.)

Assume moreover that $F_{\mu_0}^*(x; 1, t) \neq 0$ for at least one $\mu_0 \in \Omega$ (e.g. for the identity-permutation state). This nonvanishing holds for generic x , and is automatic under standard normalizations of interpolation Macdonald polynomials (e.g. $M_0(x; q, t) = 1$ in the conventions of [1]).

We define a continuous-time Markov chain on Ω and prove that its stationary distribution is

$$\pi(\mu) \propto F_\mu^*(x; 1, t).$$

2 Formal rates, CTMC generator conditions, and irreducibility

Definition 1 (Formal rates). *For $\mu \in \Omega$ and $i \in \{1, \dots, n-1\}$ let $s_i\mu$ be μ with entries at positions i and $i+1$ swapped. Define a matrix Q on Ω by*

$$Q(\mu, s_i\mu) = \begin{cases} \frac{x_i - tx_{i+1}}{x_i - x_{i+1}}, & \mu_i < \mu_{i+1}, \\ \frac{tx_i - x_{i+1}}{x_i - x_{i+1}}, & \mu_i > \mu_{i+1}, \end{cases} \quad (1)$$

and $Q(\mu, \mu) = -\sum_{i=1}^{n-1} Q(\mu, s_i\mu)$, with all other $Q(\mu, \nu) = 0$.

Remark 1 (Analytic conditions on (x, t)). *For the expressions in (1) and in Lemma 1 to make sense, it suffices to assume:*

(a) (no poles) $x_i \neq x_{i+1}$ for all i and $x_i \neq tx_{i+1}$ and $tx_i \neq x_{i+1}$ for all i .

To interpret Q as a CTMC generator we additionally assume:

(b) (nonnegative rates) $Q(\mu, s_i \mu) \geq 0$ for all allowed moves (equivalently, for each fixed i , the numerator in (1) has the same sign as $x_i - x_{i+1}$).

For positivity of the stationary probability distribution, we will optionally assume:

(c) (positivity propagation) $(x_i - tx_{i+1})(tx_i - x_{i+1}) > 0$ for all i .

A simple sufficient regime is $x_1 > \dots > x_n > 0$ and $x_i > tx_{i+1}$ for all i (in particular, when $t \geq 1$ this implies (a)–(c)).

Remark 2 (When Q is a CTMC generator). Under (b) of Remark 1, the off-diagonal entries $Q(\mu, s_i \mu)$ are nonnegative and $Q(\mu, \mu)$ is the negative row sum; hence Q is the generator of a continuous-time Markov chain on the finite state space Ω . Without (b), Q should be viewed only as a formally defined operator on functions on Ω .

Remark 3 (Irreducibility under strict positivity). If, in addition to (a), we assume the strict inequalities

$$\frac{x_i - tx_{i+1}}{x_i - x_{i+1}} > 0 \quad \text{and} \quad \frac{tx_i - x_{i+1}}{x_i - x_{i+1}} > 0 \quad \forall i \in \{1, \dots, n-1\}, \quad (2)$$

then every adjacent swap occurs with strictly positive rate for every state μ . Since adjacent transpositions generate S_n and $\Omega \simeq S_n$, the CTMC is irreducible.

Remark 4. Note that (2) implies (a)–(c) of Remark 1.

3 The key input: the $q = 1$ adjacent-exchange relation (division-free form)

Lemma 1 (Degenerate exchange relation, division-free). Assume (a) of Remark 1. Let $\mu \in \Omega$ and $i \in \{1, \dots, n-1\}$. Then:

(i) if $\mu_i < \mu_{i+1}$, then

$$(tx_i - x_{i+1}) F_{s_i \mu}^*(x; 1, t) = (x_i - tx_{i+1}) F_\mu^*(x; 1, t); \quad (3)$$

(ii) if $\mu_i > \mu_{i+1}$, then

$$(x_i - tx_{i+1}) F_{s_i \mu}^*(x; 1, t) = (tx_i - x_{i+1}) F_\mu^*(x; 1, t). \quad (4)$$

Whenever $F_\mu^*(x; 1, t) \neq 0$, these identities are equivalent to the ratio form obtained by dividing both sides.

Lemma 2 (Nonvanishing propagation). *Assume (a) of Remark 1. Then for every $\mu \in \Omega$ and every $i \in \{1, \dots, n-1\}$,*

$$F_\mu^*(x; 1, t) = 0 \iff F_{s_i \mu}^*(x; 1, t) = 0.$$

Proof. Assume $\mu_i < \mu_{i+1}$ (the other case is symmetric). By (3),

$$(tx_i - x_{i+1}) F_{s_i \mu}^* = (x_i - tx_{i+1}) F_\mu^*.$$

Under (a) we have $tx_i - x_{i+1} \neq 0$ and $x_i - tx_{i+1} \neq 0$, hence $F_{s_i \mu}^* = 0$ iff $F_\mu^* = 0$. \square

Corollary 1. *If $F_{\mu_0}^*(x; 1, t) \neq 0$ for at least one $\mu_0 \in \Omega$, then $F_\mu^*(x; 1, t) \neq 0$ for all $\mu \in \Omega$.*

Proof. By Lemma 2, nonvanishing is preserved under each adjacent transposition s_i . Since $\Omega \simeq S_n$ is connected by adjacent transpositions, every μ can be reached from μ_0 by such moves, so $F_\mu^*(x; 1, t) \neq 0$ for all μ . \square

Lemma 3 (Checkable bibliographic route to Lemma 1). *Let $M_u(x; q, t)$ denote the non-symmetric interpolation Macdonald polynomials in the normalization of [1] (their M_u). In [1, §3], see the displayed formula for T_i (the Demazure–Lusztig action) and the displayed adjacent recursion for M_{us_i} (the display immediately following [1, Eq. (3.1)]). These displayed formulas imply an explicit rational scalar factor $\kappa_i(u; x; q, t)$ relating M_{us_i} and M_u . Specializing that explicit factor to $q = 1$ and translating notation $M_u \leftrightarrow F_\mu^*$ yields (3)–(4).*

Remark 5 (About the LRW simplification). *Lemma 3 reduces Lemma 1 to a one-step substitution of the displayed Demazure–Lusztig operator formula into the displayed adjacent recursion in [1, §3], followed by a short algebraic simplification and the specialization $q = 1$. We omit this algebra in the present note.*

4 Positivity and probability measure

Lemma 4 (Positivity propagation). *Assume (a) and (c) of Remark 1. Assume further that $F_{\mu_0}^*(x; 1, t) > 0$ for at least one state $\mu_0 \in \Omega$. Then $F_\mu^*(x; 1, t) > 0$ for all $\mu \in \Omega$.*

Proof. By Corollary 1, all weights are nonzero. Under (c), the coefficients in (3)–(4) have the same sign, so along any adjacent transposition $F_{s_i \mu}^*$ and F_μ^* have the same sign. Since Ω is connected by adjacent transpositions and one state has positive value, all states have positive value. \square

Definition 2 (Target probability measure). *Assume (a) and (c) of Remark 1 and assume $F_{\mu_0}^*(x; 1, t) > 0$ for at least one state $\mu_0 \in \Omega$. By Lemma 4, all weights are strictly positive. Define*

$$Z := \sum_{\nu \in \Omega} F_\nu^*(x; 1, t) \in (0, \infty), \quad \pi(\mu) := \frac{F_\mu^*(x; 1, t)}{Z}.$$

5 Reversibility first for unnormalised weights, then for the probability measure

Theorem 1 (Reversibility of the unnormalised weights). *Assume (a)–(b) of Remark 1 so that Q is a CTMC generator. Define $w(\mu) := F_\mu^*(x; 1, t)$ (not assumed positive). Then for every $\mu \in \Omega$ and every $i \in \{1, \dots, n-1\}$,*

$$w(\mu) Q(\mu, s_i \mu) = w(s_i \mu) Q(s_i \mu, \mu).$$

In particular, the (possibly signed) measure w is reversible for Q .

Proof. Assume $\mu_i < \mu_{i+1}$ (the other case is symmetric). Multiplying (1) by $(x_i - x_{i+1})$ gives

$$(x_i - x_{i+1}) Q(\mu, s_i \mu) = x_i - t x_{i+1}, \quad (x_i - x_{i+1}) Q(s_i \mu, \mu) = t x_i - x_{i+1}.$$

Using (3) and cancelling the common nonzero factor $(x_i - x_{i+1})$ yields $w(\mu) Q(\mu, s_i \mu) = w(s_i \mu) Q(s_i \mu, \mu)$. The case $\mu_i > \mu_{i+1}$ uses (4). \square

Remark 6 (Operator form of reversibility). *Once π is defined, the detailed-balance identity is equivalent to Q being self-adjoint in $\ell^2(\pi)$, i.e. $\langle f, Qg \rangle_\pi = \langle Qf, g \rangle_\pi$ for all functions f, g on Ω .*

Remark 7. *The detailed-balance identity in Theorem 1 does not require assumption (c). Assumption (c) is used only to ensure that the normalised weights define a probability distribution (positivity).*

Theorem 2 (Stationary probability distribution and (conditional) uniqueness). *Assume (a)–(b) of Remark 1 and assume π is defined as in Definition 2. Then π is reversible and hence stationary for the CTMC with generator Q . If moreover the strict-positivity condition (2) holds, then the CTMC is irreducible and π is the unique stationary distribution. If (2) fails, the CTMC may decompose into multiple closed communicating classes; in that case π is still stationary (and reversible), but stationary distributions need not be unique.*

Proof. By Theorem 1, the unnormalised weights $w(\mu) = F_\mu^*(x; 1, t)$ satisfy detailed balance with Q . Dividing the detailed-balance identity by Z on both sides shows the same identity holds for $\pi(\mu) = w(\mu)/Z$. Hence π is reversible and therefore stationary.

Under (2) the CTMC is irreducible by Remark 3, and in a finite irreducible CTMC the stationary distribution is unique. \square

Corollary 2 (Restriction to a closed class). *Let $C \subseteq \Omega$ be a closed communicating class for the CTMC generated by Q , and let Q^C be the restricted generator*

$$Q^C(\mu, \nu) := Q(\mu, \nu) \quad (\mu, \nu \in C).$$

Then the renormalised restriction

$$\pi_C(\mu) := \frac{\pi(\mu)}{\sum_{\eta \in C} \pi(\eta)} \quad (\mu \in C)$$

is stationary for the restricted CTMC with generator Q^C .

Proof. Since $\pi Q = 0$ and C is closed, the balance equations for states in C involve only transitions within C , i.e. $\pi|_C Q^C = 0$. Renormalising preserves stationarity. \square

6 Optional: clean “final theorem” under strict positivity

If you prefer a single clean final statement, you can combine the hypotheses as follows (using Remark 4):

Theorem 3 (Stationarity and uniqueness under strict positivity). *Assume (2) and assume $F_{\mu_0}^*(x; 1, t) > 0$ for at least one $\mu_0 \in \Omega$. Then*

$$\pi(\mu) = \frac{F_{\mu}^*(x; 1, t)}{\sum_{\nu \in \Omega} F_{\nu}^*(x; 1, t)}$$

is a well-defined stationary distribution of the CTMC with generator Q . Moreover, the chain is irreducible and π is the unique stationary distribution.

7 Role of restrictedness (kept logically honest)

The detailed-balance verification uses only the exchange identity (Lemma 1) and the analytic assumptions on (x, t) ensuring rates are well-defined. Restrictedness of λ is used only to justify the non-degeneracy of the $q = 1$ specialization at the chosen evaluation point x (existence/finite values of $F_{\mu}^*(x; 1, t)$ for all $\mu \in \Omega$). If you have a precise reference formulating this non-degeneracy for restricted λ at $q = 1$, it should be cited in the problem statement section.

References

- [1] A. Lascoux, E. M. Rains, and S. O. Warnaar, *Nonsymmetric interpolation Macdonald polynomials and gl_n basic hypergeometric series*, Transform. Groups 14 (2009), no. 3, 613–647. Preprint available as arXiv:0807.1351.