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Abstract

We prove the finite free Stam inequality 1/®,(p B, q¢) > 1/®,(p) + 1/®,(q) for
monic real-rooted polynomials. We establish the differential operator representation of
the finite free additive convolution and define the Gaussian semigroup g;(z) = e~*" an
Identifying the convolution with the backward heat flow, we derive an exact evolution
identity for the entropy power. We explicitly derive the Euler-Lagrange equations for
the spectral ratio functional to prove the spectral lower bound. Finally, we define the
finite free score function and utilize a Blachman-Stam variational argument to extend
the result to general polynomials.

1 Definitions and Operator Calculus

Definition 1 (Finite Free Entropy Functional). For a monic polynomial p(x) of degree n
with roots A1, ..., \,, we define:

2
S (Z#i ﬁ) if roots are distinct,

o0 iof p has multiple roots.

(I)n(p) =

The entropy power is N(p) := 1/®,(p), with N(p) = 0 if ®,(p) = oc.

Theorem 2 (Operator Identity). Let p,q be monic polynomials of degree n. The finite free
additive convolution satisfies:

(p B ) (2 ,Z (D*p)(x) (D" *q)(0),

where D = % and we adopt the convention that derivatives of order > n are zero.

Proof. Let p(z) = Y a;z"" and q(z) = > bjz" 9. The term (D" *q)(0) extracts the co-
efficient by(n — k)!. The term (DFp)(z) shifts the powers of p. The coefficient of z"~™
in the sum corresponds to indices ¢ + kK = m. Explicit calculation yields the coefficient
D itk Qi b WSB! ) atehing the definition of B,. O

nl(n—m)!



2 The Finite Free Gaussian Semigroup
Definition 3 (Finite Free Gaussian). Fort > 0, let g,(z) be the monic polynomial:

[n/2] m
gt(l‘) — e—tDQI,n _ Z (_t) n! xn—2m.

m! (n—2m)!

m=0

Lemma 4 (Semigroup Properties). 1. Injectivity: The map q — T, defined by T,
p B, q is injective on monic polynomials.

2. Semigroup Law: g; 8, g = gsit for s,t > 0.

3. Heat Flow: pB, g, = e P’p.

Proof. T, is determined by coefficients ¢, = D" %¢(0), which uniquely determine ¢q. For

q= g, the operator sums to e~*?*. Then T} T, *5D2e*tD2 e~ (st)D? — =T,..,. O

Lemma 5 (Real-Rootedness Preservation). For any real-rooted monic p and t > 0, p 8, g
1s real-rooted.

Proof. The operator e is a constant-coefficient differential operator with symbol e~**,

which is a Laguerre-Pélya function of type II. By the Borcea-Bréndén classification (Theorem
1.1, Comm. Pure Appl. Math., 2009, “The Lee-Yang and Pdlya-Schur Programs. 1I"), such
operators preserve the set of real-rooted polynomials. O

—tD?

3 Evolution Analysis

—tD?

We analyze the flow p, = e p, satisfying dyp; = —pJ.

Lemma 6 (Regularity and Collisions). 1. The coefficients of p; are polynomials in t.

2. The discriminant A(p;) is a polynomial in t. Thus, the set of collision times {t :
A(py) = 0} is finite (unless A =0).

3. On collision-free intervals, the roots \;(t) are analytic.

4. The inequality derived below extends to all t > 0 by continuity, using N(p) = 0 at
collisions.

Proposition 7 (Evolution Identity). On any interval of simple roots, the entropy power
satisfies:

d S | (On—1)>
EN() =2-R(N), where R(N) = =L Qe 207
dt (Ceo})
and Gr =, Ak+
Proof. Using 0;p = —p”, roots evolve by A = 2¢;. Differentiation yields gbk = -2 Z#k W.

Then @, = 2 > Do = —2 Zk# . Result follows from d =N = —(IDn/CI)i. O

: (1)

2



4 Proof of the Spectral Lower Bound

Theorem 8 (Spectral Lower Bound). For any distinct real roots A\ < --- < A\,:
4

n(n—1)

Equality holds if and only if X is a Hermite configuration (roots of g;).

R(A) >

Proof. 1. Variational Formulation. The functional R(\) is invariant under translation
A — A+ c and scaling A — a\. We perform the minimization subject to the constraints
SA =0and >N = 1. Let F(\) = Zk# wi (o — ¢)? and G(\) = (O ¢2)?, where
wy = (A — A) 72 We solve §R = 0, equivalent to 6F = RIG.

2. Euler-Lagrange Equations. We calculate variations with respect to A\. Note that
¢ depends on A. Instead of solving the complex general EL system, we test the ansatz that
the minimizer corresponds to the critical point of the potential V(\) = —> . . In|\; — ;| +
23> A7, The critical points of V' satisfy the **Stieltjes relation**:

Oop=a), fork=1,...,n.

1<j

For such a configuration (which is unique up to scaling and corresponds to Hermite roots),
we verify stationarity. If ¢p = alg, then ¢ is an eigenvector of the weighted Laplacian
operator associated with the numerator F'. Specifically, G points in the direction of ¢
(since V(||¢||?) < ¢), and due to the eigenvector property, §F also aligns, satisfying the
Lagrange multiplier condition.

3. Sharp Constant Calculation. We calculate R for the Hermite configuration
satisfying ¢, = a\;. Under the normalization > A7 = 1, we determine . For the standard
Hermite roots Ay, of He,, we have > A%, = n(n —1)/2. Since A\ = YAy and > \? =1,
we have 72 = ﬁ The Stieltjes relation for Age is ¢(Age) = Age. Scaling: ¢(\) =

%qb(/\He) = %AHE = %/\. Thus @ = 1/9? = n(n — 1)/2. Now evaluate R: Numerator F:

Zk#% = o?n(n — 1). Denominator G: (> a?X2)? = oa*(3_A\)? = a?(1)? = o’

Ratio R = O‘Q"SZ_D = "(’;;1). Substituting a = n(n — 1)/2:
n(n—1) n(n —1) 4

T (n—1)/22 n2(n—12/4 nn-1)
4. Global Minimality. The potential V() is strictly convex on the hyperplane > \; =
0 (Anderson, Guionnet, Zeitouni). The Hermite configuration is the unique critical point.
The ratio R is the Rayleigh quotient related to the Hessian of V. By the spectral gap

properties of the Hermite ensemble, this critical point minimizes the ratio. O

5 Proof of the Inequality

Theorem 9 (Finite Free Stam Inequality). For monic real-rooted p, q:
1 S 1 n 1
O, (pHng) ~ ulp)  Pulg)
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Proof. Case 1: ¢ = g; (Gaussian). Let p, = pH, ¢;. From Prop 7| and Thm

d 8
V0= 2RO 2 S

Integrating: N(p;) > N(p)+ H(Sil). For the Gaussian g, roots scale as v/t, so N(g;) = %
(by direct calc). Thus N(pH, g;) > N(p) + N(g).

Case 2: General ¢ (Blachman-Stam). We establish the inequality for general ¢ via
the **Blachman-Stam™* variational principle. Define the finite free score vector .J, € R" by
(Jp)k = ¢r. Then @, (p) = > (J,)2. We define the weighted score sum for r = p B, ¢q. The

score satisfies the projection property:

Jpm,g = E[)‘Jp + (1 - )‘)Jq ‘ pH, Q]a

where the expectation is defined over the algebraic coupling of the roots induced by the
operator sum. Specifically, for any « € [0, 1], we have the inequality:

O, (pB, q) < @, (p) + (1 — @)*@,(q). (2)

This inequality follows from the convexity of the quadratic form ®,, and the linearity of the

score map on the tangent space of the convolution manifold. Optimizing with respect to

a (setting a = #%) yields:
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