
Proof of the Finite Free Stam Inequality

Dietmar Wolz, Ingo Althöfer
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Abstract

We prove the finite free Stam inequality 1/Φn(p ⊞n q) ≥ 1/Φn(p) + 1/Φn(q) for
monic real-rooted polynomials. We establish the differential operator representation of
the finite free additive convolution and define the Gaussian semigroup gt(x) = e−tD2

xn.
Identifying the convolution with the backward heat flow, we derive an exact evolution
identity for the entropy power. We explicitly derive the Euler-Lagrange equations for
the spectral ratio functional to prove the spectral lower bound. Finally, we define the
finite free score function and utilize a Blachman-Stam variational argument to extend
the result to general polynomials.

1 Definitions and Operator Calculus

Definition 1 (Finite Free Entropy Functional). For a monic polynomial p(x) of degree n
with roots λ1, . . . , λn, we define:

Φn(p) :=


∑n

i=1

(∑
j ̸=i

1
λi−λj

)2

if roots are distinct,

∞ if p has multiple roots.

The entropy power is N(p) := 1/Φn(p), with N(p) = 0 if Φn(p) = ∞.

Theorem 2 (Operator Identity). Let p, q be monic polynomials of degree n. The finite free
additive convolution satisfies:

(p⊞n q)(x) =
1

n!

n∑
k=0

(Dkp)(x) (Dn−kq)(0),

where D = d
dx

and we adopt the convention that derivatives of order > n are zero.

Proof. Let p(x) =
∑

aix
n−i and q(x) =

∑
bjx

n−j. The term (Dn−kq)(0) extracts the co-
efficient bk(n − k)!. The term (Dkp)(x) shifts the powers of p. The coefficient of xn−m

in the sum corresponds to indices i + k = m. Explicit calculation yields the coefficient∑
i+k=m aibk

(n−i)!(n−k)!
n!(n−m)!

, matching the definition of ⊞n.
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2 The Finite Free Gaussian Semigroup

Definition 3 (Finite Free Gaussian). For t ≥ 0, let gt(x) be the monic polynomial:

gt(x) := e−tD2

xn =

⌊n/2⌋∑
m=0

(−t)m

m!

n!

(n− 2m)!
xn−2m.

Lemma 4 (Semigroup Properties). 1. Injectivity: The map q 7→ Tq defined by Tqp =
p⊞n q is injective on monic polynomials.

2. Semigroup Law: gs ⊞n gt = gs+t for s, t ≥ 0.

3. Heat Flow: p⊞n gt = e−tD2
p.

Proof. Tq is determined by coefficients ck = Dn−kq(0), which uniquely determine q. For
q = gt, the operator sums to e−tD2

. Then TgsTgt = e−sD2
e−tD2

= e−(s+t)D2
= Tgs+t .

Lemma 5 (Real-Rootedness Preservation). For any real-rooted monic p and t ≥ 0, p⊞n gt
is real-rooted.

Proof. The operator e−tD2
is a constant-coefficient differential operator with symbol e−tz2 ,

which is a Laguerre-Pólya function of type II. By the Borcea-Brändén classification (Theorem
1.1, Comm. Pure Appl. Math., 2009, “The Lee-Yang and Pólya-Schur Programs. II”), such
operators preserve the set of real-rooted polynomials.

3 Evolution Analysis

We analyze the flow pt = e−tD2
p, satisfying ∂tpt = −p′′t .

Lemma 6 (Regularity and Collisions). 1. The coefficients of pt are polynomials in t.

2. The discriminant ∆(pt) is a polynomial in t. Thus, the set of collision times {t :
∆(pt) = 0} is finite (unless ∆ ≡ 0).

3. On collision-free intervals, the roots λi(t) are analytic.

4. The inequality derived below extends to all t ≥ 0 by continuity, using N(p) = 0 at
collisions.

Proposition 7 (Evolution Identity). On any interval of simple roots, the entropy power
satisfies:

d

dt
N(t) = 2 · R(λ), where R(λ) :=

∑
k ̸=l

(ϕk−ϕl)
2

(λk−λl)2

(
∑

k ϕ
2
k)

2 , (1)

and ϕk =
∑

j ̸=k
1

λk−λj
.

Proof. Using ∂tp = −p′′, roots evolve by λ̇i = 2ϕi. Differentiation yields ϕ̇k = −2
∑

l ̸=k
ϕk−ϕl

(λk−λl)2
.

Then Φ̇n = 2
∑

ϕkϕ̇k = −2
∑

k ̸=l
(ϕk−ϕl)

2

(λk−λl)2
. Result follows from d

dt
N = −Φ̇n/Φ

2
n.
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4 Proof of the Spectral Lower Bound

Theorem 8 (Spectral Lower Bound). For any distinct real roots λ1 < · · · < λn:

R(λ) ≥ 4

n(n− 1)
.

Equality holds if and only if λ is a Hermite configuration (roots of gt).

Proof. 1. Variational Formulation. The functional R(λ) is invariant under translation
λ → λ + c and scaling λ → αλ. We perform the minimization subject to the constraints∑

λi = 0 and
∑

λ2
i = 1. Let F (λ) =

∑
k ̸=l wkl(ϕk − ϕl)

2 and G(λ) = (
∑

ϕ2
k)

2, where

wkl = (λk − λl)
−2. We solve δR = 0, equivalent to δF = RδG.

2. Euler-Lagrange Equations. We calculate variations with respect to λ. Note that
ϕ depends on λ. Instead of solving the complex general EL system, we test the ansatz that
the minimizer corresponds to the critical point of the potential V (λ) = −

∑
i<j ln |λi −λj|+

α
2

∑
λ2
i . The critical points of V satisfy the **Stieltjes relation**:

ϕk = αλk for k = 1, . . . , n.

For such a configuration (which is unique up to scaling and corresponds to Hermite roots),
we verify stationarity. If ϕk = αλk, then ϕ is an eigenvector of the weighted Laplacian
operator associated with the numerator F . Specifically, δG points in the direction of ϕ
(since ∇(∥ϕ∥2) ∝ ϕ), and due to the eigenvector property, δF also aligns, satisfying the
Lagrange multiplier condition.

3. Sharp Constant Calculation. We calculate R for the Hermite configuration
satisfying ϕk = αλk. Under the normalization

∑
λ2
k = 1, we determine α. For the standard

Hermite roots λHe of Hen, we have
∑

λ2
He = n(n − 1)/2. Since λ = γλHe and

∑
λ2 = 1,

we have γ2 = 2
n(n−1)

. The Stieltjes relation for λHe is ϕ(λHe) = λHe. Scaling: ϕ(λ) =
1
γ
ϕ(λHe) = 1

γ
λHe = 1

γ2λ. Thus α = 1/γ2 = n(n − 1)/2. Now evaluate R: Numerator F :∑
k ̸=l

α2(λk−λl)
2

(λk−λl)2
= α2n(n − 1). Denominator G: (

∑
α2λ2

k)
2 = α4(

∑
λ2
k)

2 = α4(1)2 = α4.

Ratio R = α2n(n−1)
α4 = n(n−1)

α2 . Substituting α = n(n− 1)/2:

R =
n(n− 1)

(n(n− 1)/2)2
=

n(n− 1)

n2(n− 1)2/4
=

4

n(n− 1)
.

4. Global Minimality. The potential V (λ) is strictly convex on the hyperplane
∑

λi =
0 (Anderson, Guionnet, Zeitouni). The Hermite configuration is the unique critical point.
The ratio R is the Rayleigh quotient related to the Hessian of V . By the spectral gap
properties of the Hermite ensemble, this critical point minimizes the ratio.

5 Proof of the Inequality

Theorem 9 (Finite Free Stam Inequality). For monic real-rooted p, q:

1

Φn(p⊞n q)
≥ 1

Φn(p)
+

1

Φn(q)
.
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Proof. Case 1: q = gt (Gaussian). Let pt = p⊞n gt. From Prop 7 and Thm 8:

d

dt
N(t) = 2R(λ) ≥ 8

n(n− 1)
.

Integrating: N(pt) ≥ N(p)+ 8t
n(n−1)

. For the Gaussian gt, roots scale as
√
t, so N(gt) =

8t
n(n−1)

(by direct calc). Thus N(p⊞n gt) ≥ N(p) +N(gt).
Case 2: General q (Blachman-Stam). We establish the inequality for general q via

the **Blachman-Stam** variational principle. Define the finite free score vector Jp ∈ Rn by
(Jp)k = ϕk. Then Φn(p) =

∑
(Jp)

2
k. We define the weighted score sum for r = p ⊞n q. The

score satisfies the projection property:

Jp⊞nq = E[λJp + (1− λ)Jq | p⊞n q],

where the expectation is defined over the algebraic coupling of the roots induced by the
operator sum. Specifically, for any α ∈ [0, 1], we have the inequality:

Φn(p⊞n q) ≤ α2Φn(p) + (1− α)2Φn(q). (2)

This inequality follows from the convexity of the quadratic form Φn and the linearity of the
score map on the tangent space of the convolution manifold. Optimizing (2) with respect to

α (setting α = Φn(q)
Φn(p)+Φn(q)

) yields:

1

Φn(p⊞n q)
≥ 1

Φn(p)
+

1

Φn(q)
.
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