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Abstract

We define the slice filtration on the category of G-spectra adapted to an incomplete transfer
system O (equivalently, an indexing system 7). We state and prove a characterization of the
O-slice connectivity of a connective G-spectrum in terms of the connectivity of its geometric
fixed points & (X).

1 Definitions and Setup

Let G be a finite group. An N, operad O is equivalent to the data of an indexing system Z [1]. For
each subgroup H < G, Z(H) is a collection of finite H-sets closed under finite coproducts, restriction
to subgroups, and self-induction.

Definition 1.1 (Admissible Slice Cells). For a subgroup H < G, let T' € Z(H) be an admissible
H-set. Let Vi = R[T] denote the corresponding permutation representation. An O-slice cell is a
G-spectrum of the form

Gy Ay ST, H<G, TeZ(H).

We assign this cell a filtration degree equal to the cardinality |T'|.

Definition 1.2 (O-Slice Filtration). For n € Z, let Tgn C Sp% be the localizing subcategory
generated by all O-slice cells G A SV7 satisfying

|T| > n.
A G-spectrum X is O-slice n-connective if X € 7€, .

Remark 1.3. The definition of the filtration degree as |T| is a convention. Our explicit bound Az (n)
below is derived specifically for this choice.

Definition 1.4 (Connectivity Bound Ay (n)). For a subgroup H < G and integer n, define the
bound Ay (n) as:
Apg(n) =min{|T/H||T € Z(H),|T| > n}.

Here |T'/H| denotes the number of H-orbits in 7', which corresponds to dim((R[T])).



2 Lemmas

Lemma 2.1 (Restriction). For any subgroup K < G, restriction preserves O-slice connectivity:
ResK(T>n) C TOlK.
Proof. Let G4 A SYT be a generator with T € Z(H) and |T| > n. By the Mackey decomposition:

Res%;((GjL NH SVT) ~ \/ K ANgnon ResgngH(SVT)'
gEK\G/H

Let M = K N9H. The restriction of Vy is the permutation representation of Rest; (7). By the
closure properties of indexing systems, if T' € Z(H), then Resk (T) € Z(M). Thus, each summand
is an O|g-slice cell. The filtration degree is preserved because restriction of the action does not
change the cardinality of the underlying set: |Res]\H4T| =1T| > n. O

Lemma 2.2 (Induction Compatibility). If X € T> ¥ for a subgroup K < G, then nd$ X € 7'>n

Proof. Tt suffices to show this for generators. Let K Ay SV7 be a generator for TS | , where H < K
and T' € Z(H). Then

Ind%(Ky Ag SV7) ~ Gy A (K4 A SYT) ~ Gy Ay S'7.

Since T € Z(H), this is a valid generator for 7€, with dimension |T|. (Note: The self-induction

axiom of indexing systems ensures that we can formally regard this as induced from the K-set
K xpg T € Z(K), ensuring compatibility with the structure of Z on K.) O

Lemma 2.3 (Proper Isotropy Reduction). Let P be the family of proper subgroups of G. For a
connective G-spectrum X,

EPy A X €79, <= Resf(X) € 79X for all K < G.

Proof. The space EP is a G-CW complex built from cells G/K x D™ where K € P. Thus,
EP; A X lies in the localizing subcategory generated by G/K A X ~ Indf(ReS?(X for K < G.
If Res$ X € T>|K then by Lemma the induced term is in 7¢,. Since 7€, is localizing,
EP. ANX €78 . - -

Conversely_, suppose EPL A X € Tgn. Let K be a proper subgroup. For any subgroup J < K, J
is also a proper subgroup of G (since K < G). Therefore, the fixed point space (EP)” is contractible
for all J < K. This implies that the restriction EP|f is K-equivariantly contractible. Consequently,

Res%(EP;) ~ SO, and
Res% (EP. A X) ~ Res%(EP,) ARes% X ~ SO A Res$ X ~ Res% X
By Lemma the restriction of any element in Tgn lies in 7'>7|1K Therefore, Res KX € TO‘K . g

Lemma 2.4 (Geometric Fixed Points of Generators). For a generator C = G Ag SYT with
T € I(H), the geometric fized points at G are:

{S(VT)G if H=G

PC(C) ~
(©) * ifH<G

The connectivity of ®%(SVT) is eractly dim((Vy)¥) = |T/G| (the number of orbits).



Proof. If H < G, the generator is induced from a proper subgroup, so its geometric fixed points
vanish (as ®C o Ind§ ~ ). If H = G, ®C is monoidal and ®%(SV) = SV For a permutation
representation R[7], the fixed subspace is spanned by the orbit sums, so its dimension is |7/G|. O

3 Main Theorem

Theorem 3.1. Let G be a finite group and O an Noo operad with indexing system Z. A connective
G-spectrum X is O-slice n-connective (X € Tgn) if and only if for all H < G, the geometric fized
points ®(X) are Ag(n)-connective.

Proof. We proceed by induction on the order of G. The base case |G| = 1 is immediate as A\1(n) =n
and Tgn is the standard Postnikov filtration. Assume the theorem holds for all proper subgroups of

G.

Step 1: Isotropy Separation. Consider the isotropy separation sequence:

EP,AX — X — EPAX.

Since Tgn is a localizing subcategory, X € Tgn if and only if both terms are in Tgn.

Step 2: The Proper Part. By Lemma EPLANX € TSn is equivalent to RGS?(X € TSJIK for
all proper K < G. Applying the inductive hypothesis to K, this holds if and only if for all L < K,
dL(Res X) ~ ®F(X) is Ap(n)-connective. As K ranges over all proper subgroups, this condition is
equivalent to ®(X) being Az (n)-connective for all proper H < G.

Step 3: The Geometric Part. The term EPAX is geometric (trivial restriction to proper
subgroups). Since smashing with EP kills any generator induced from a proper subgroup (recall
PG (IndGY) ~ « for H < G), EPAX € Tgn if and only if it lies in the localizing subcategory
generated by cells V7 with T € Z(G) and |T'| > n.

For geometric spectra, the functor ®“ is conservative (detects equivalences) and preserves
connectivity [2]. Thus, the condition is equivalent to ®E(EP A X) ~ ®F(X) lying in the localizing
subcategory of spectra generated by spheres SVT' where |T'| > n. It is a standard result that the
localizing subcategory generated by spheres of dimension > k is precisely the category of k-connective
spectra. Therefore, the condition is that ®&(X) is k-connective where

k = min{dim(V) | T € Z(G), |T| > n} = min{|T/G| | T € Z(G), |T| > n} = A\g(n).

Conclusion. Combining Step 2 (conditions for H < G) and Step 3 (condition for H = G),
X e Tgn if and only if ®7(X) is Ay (n)-connective for all H < G. O
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