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Abstract

We define the slice filtration on the category of G-spectra adapted to an incomplete transfer
system O (equivalently, an indexing system I). We state and prove a characterization of the
O-slice connectivity of a connective G-spectrum in terms of the connectivity of its geometric
fixed points ΦH(X).

1 Definitions and Setup
Let G be a finite group. An N∞ operad O is equivalent to the data of an indexing system I [1]. For
each subgroup H ≤ G, I(H) is a collection of finite H-sets closed under finite coproducts, restriction
to subgroups, and self-induction.

Definition 1.1 (Admissible Slice Cells). For a subgroup H ≤ G, let T ∈ I(H) be an admissible
H-set. Let VT = R[T ] denote the corresponding permutation representation. An O-slice cell is a
G-spectrum of the form

G+ ∧H SVT , H ≤ G, T ∈ I(H).

We assign this cell a filtration degree equal to the cardinality |T |.

Definition 1.2 (O-Slice Filtration). For n ∈ Z, let τO
≥n ⊆ SpG be the localizing subcategory

generated by all O-slice cells G+ ∧H SVT satisfying

|T | ≥ n.

A G-spectrum X is O-slice n-connective if X ∈ τO
≥n.

Remark 1.3. The definition of the filtration degree as |T | is a convention. Our explicit bound λH(n)
below is derived specifically for this choice.

Definition 1.4 (Connectivity Bound λH(n)). For a subgroup H ≤ G and integer n, define the
bound λH(n) as:

λH(n) = min {|T/H| | T ∈ I(H), |T | ≥ n} .

Here |T/H| denotes the number of H-orbits in T , which corresponds to dim((R[T ])H).
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2 Lemmas
Lemma 2.1 (Restriction). For any subgroup K ≤ G, restriction preserves O-slice connectivity:

ResG
K(τO

≥n) ⊆ τ
O|K
≥n .

Proof. Let G+ ∧H SVT be a generator with T ∈ I(H) and |T | ≥ n. By the Mackey decomposition:

ResG
K(G+ ∧H SVT ) ≃

∨
g∈K\G/H

K+ ∧K∩gH ResH
K∩gH(SVT ).

Let M = K ∩ gH. The restriction of VT is the permutation representation of ResH
M (T ). By the

closure properties of indexing systems, if T ∈ I(H), then ResH
M (T ) ∈ I(M). Thus, each summand

is an O|K-slice cell. The filtration degree is preserved because restriction of the action does not
change the cardinality of the underlying set: |ResH

M T | = |T | ≥ n.

Lemma 2.2 (Induction Compatibility). If X ∈ τ
O|K
≥n for a subgroup K ≤ G, then IndG

KX ∈ τO
≥n.

Proof. It suffices to show this for generators. Let K+ ∧H SVT be a generator for τ
O|K
≥n , where H ≤ K

and T ∈ I(H). Then

IndG
K(K+ ∧H SVT ) ≃ G+ ∧K (K+ ∧H SVT ) ≃ G+ ∧H SVT .

Since T ∈ I(H), this is a valid generator for τO
≥n with dimension |T |. (Note: The self-induction

axiom of indexing systems ensures that we can formally regard this as induced from the K-set
K ×H T ∈ I(K), ensuring compatibility with the structure of I on K.)

Lemma 2.3 (Proper Isotropy Reduction). Let P be the family of proper subgroups of G. For a
connective G-spectrum X,

EP+ ∧ X ∈ τO
≥n ⇐⇒ ResG

K(X) ∈ τ
O|K
≥n for all K < G.

Proof. The space EP is a G-CW complex built from cells G/K × Dm where K ∈ P. Thus,
EP+ ∧ X lies in the localizing subcategory generated by G/K+ ∧ X ≃ IndG

KResG
KX for K < G.

If ResG
KX ∈ τ

O|K
≥n , then by Lemma 2.2, the induced term is in τO

≥n. Since τO
≥n is localizing,

EP+ ∧ X ∈ τO
≥n.

Conversely, suppose EP+ ∧ X ∈ τO
≥n. Let K be a proper subgroup. For any subgroup J ≤ K, J

is also a proper subgroup of G (since K < G). Therefore, the fixed point space (EP)J is contractible
for all J ≤ K. This implies that the restriction EP|K is K-equivariantly contractible. Consequently,
ResG

K(EP+) ≃ S0, and

ResG
K(EP+ ∧ X) ≃ ResG

K(EP+) ∧ ResG
KX ≃ S0 ∧ ResG

KX ≃ ResG
KX.

By Lemma 2.1, the restriction of any element in τO
≥n lies in τ

O|K
≥n . Therefore, ResG

KX ∈ τ
O|K
≥n .

Lemma 2.4 (Geometric Fixed Points of Generators). For a generator C = G+ ∧H SVT with
T ∈ I(H), the geometric fixed points at G are:

ΦG(C) ≃
{

S(VT )G if H = G

∗ if H < G

The connectivity of ΦG(SVT ) is exactly dim((VT )G) = |T/G| (the number of orbits).
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Proof. If H < G, the generator is induced from a proper subgroup, so its geometric fixed points
vanish (as ΦG ◦ IndG

H ≃ ∗). If H = G, ΦG is monoidal and ΦG(SV ) ∼= SV G . For a permutation
representation R[T ], the fixed subspace is spanned by the orbit sums, so its dimension is |T/G|.

3 Main Theorem
Theorem 3.1. Let G be a finite group and O an N∞ operad with indexing system I. A connective
G-spectrum X is O-slice n-connective (X ∈ τO

≥n) if and only if for all H ≤ G, the geometric fixed
points ΦH(X) are λH(n)-connective.
Proof. We proceed by induction on the order of G. The base case |G| = 1 is immediate as λ1(n) = n
and τO

≥n is the standard Postnikov filtration. Assume the theorem holds for all proper subgroups of
G.

Step 1: Isotropy Separation. Consider the isotropy separation sequence:

EP+ ∧ X −→ X −→ ẼP ∧ X.

Since τO
≥n is a localizing subcategory, X ∈ τO

≥n if and only if both terms are in τO
≥n.

Step 2: The Proper Part. By Lemma 2.3, EP+ ∧ X ∈ τO
≥n is equivalent to ResG

KX ∈ τ
O|K
≥n for

all proper K < G. Applying the inductive hypothesis to K, this holds if and only if for all L ≤ K,
ΦL(ResG

KX) ≃ ΦL(X) is λL(n)-connective. As K ranges over all proper subgroups, this condition is
equivalent to ΦH(X) being λH(n)-connective for all proper H < G.

Step 3: The Geometric Part. The term ẼP ∧ X is geometric (trivial restriction to proper
subgroups). Since smashing with ẼP kills any generator induced from a proper subgroup (recall
ΦG(IndG

HY ) ≃ ∗ for H < G), ẼP ∧ X ∈ τO
≥n if and only if it lies in the localizing subcategory

generated by cells SVT with T ∈ I(G) and |T | ≥ n.
For geometric spectra, the functor ΦG is conservative (detects equivalences) and preserves

connectivity [2]. Thus, the condition is equivalent to ΦG(ẼP ∧ X) ≃ ΦG(X) lying in the localizing
subcategory of spectra generated by spheres SV G

T where |T | ≥ n. It is a standard result that the
localizing subcategory generated by spheres of dimension ≥ k is precisely the category of k-connective
spectra. Therefore, the condition is that ΦG(X) is k-connective where

k = min{dim(V G
T ) | T ∈ I(G), |T | ≥ n} = min{|T/G| | T ∈ I(G), |T | ≥ n} = λG(n).

Conclusion. Combining Step 2 (conditions for H < G) and Step 3 (condition for H = G),
X ∈ τO

≥n if and only if ΦH(X) is λH(n)-connective for all H ≤ G.
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