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Abstract

For a graph G = (V,E) with Laplacian L, a vertex subset S ⊆ V is ε-light if the spectral
inequality εL − LS ⪰ 0 holds. We investigate the existence of a universal constant c > 0
such that every graph contains an ε-light subset of size |S| ≥ cε|V |. We prove rigorously
that the optimal constant satisfies c ≤ 1/2 via a perfect matching obstruction. Furthermore,
we reduce the lower bound problem to a specific spectral subset selection hypothesis. We
demonstrate that this hypothesis fails for general positive semidefinite matrices, thereby
isolating the specific structural properties of graph Laplacians required to establish c = 1/2.

1 Introduction

Let G = (V,E) be a finite simple graph with n = |V | vertices. Let L be the Laplacian
matrix of G. For any subset S ⊆ V , let LS denote the Laplacian of the induced subgraph
GS = (V,E(S, S)).

Definition 1 (ε-light subset). A subset S ⊆ V is called ε-light if

LS ⪯ εL,

where ⪯ denotes the Loewner order (i.e., εL− LS is positive semidefinite).

Experimental evidence suggests that c = 1/2 is the sharp constant. This note establishes
the upper bound c ≤ 1/2 and provides a rigorous reduction of the lower bound to a matrix
discrepancy conjecture on the image of the Laplacian.

2 Upper Bound: c ≤ 1/2

Theorem 2. Any universal constant c guaranteeing the existence of an ε-light set S with |S| ≥
cεn must satisfy c ≤ 1/2.

Proof. Let G be a perfect matching on n vertices (where n is even). The edge set E comprises
n/2 disjoint edges.

Consider any edge e = {u, v} ∈ E and the vector x = eu − ev.

� In the full graph G, u and v have degree 1 and are connected only by e. The quadratic
form is x⊤Lx = 4.

� In the induced subgraph GS , if {u, v} ⊆ S, then x⊤LSx = 4. Otherwise, if at least one
endpoint is missing, x⊤LSx = 0.
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The condition LS ⪯ εL implies x⊤LSx ≤ εx⊤Lx. If S contains any full edge e, we have
4 ≤ 4ε, implying ε ≥ 1.

Thus, for any fixed ε < 1, an ε-light set S must be an independent set. The maximum size
of an independent set in a perfect matching is exactly n/2. If a universal constant c existed
such that |S| ≥ cεn, then:

n

2
≥ |S| ≥ cεn =⇒ c ≤ 1

2ε
.

Since ε can be chosen arbitrarily close to 1, we conclude c ≤ 1/2.

3 Structural Reduction via Linearization

To approach the lower bound, we decouple the quadratic dependence of LS on the vertex set S
using a linearization relaxation.

Lemma 3 (Linearization). Let δu ∈ {0, 1} be the indicator for u ∈ S. Then:

LS ⪯
∑
u∈V

δuBu, where Bu :=
1

2

∑
v∼u

L{u,v}.

Proof. We use the inequality δuδv ≤ δu+δv
2 for binary variables. Summing over edges:

LS =
∑

{u,v}∈E

δuδvL{u,v} ⪯
∑

{u,v}∈E

δu + δv
2

L{u,v} =
∑
u∈V

δuBu.

3.1 Projection to Image Space

To analyze the spectral norm, we work in the image of L, denoted im(L). Let L† be the Moore-
Penrose pseudoinverse. Define the projection P = L†/2LL†/2, which projects onto im(L). We
define the normalized matrices:

Au := L†/2BuL
†/2.

These satisfy Au ⪰ 0 and
∑

u∈V Au = P . All subsequent PSD inequalities are understood
to hold on the subspace im(L). Equivalently, one may view the inequalities as holding after
applying the projection P to both sides.

Theorem 4 (Reduction). Suppose that for the specific family of matrices {Au} derived from a
graph, and for any p ∈ (0, 1), there exists a subset S with |S| ≥ pn such that

∑
u∈S Au ⪯ 2pP .

Then c ≥ 1/2.

Proof. Set p = ε/2. If such a set exists, we have |S| ≥ (ε/2)n and
∑

u∈S Au ⪯ εP .
We now translate this back to the Laplacian scale. Restricted to im(L), we conjugate the

inequality by L1/2:

L1/2

(∑
u∈S

Au

)
L1/2 ⪯ εL1/2PL1/2.

Using the fact that L1/2L†/2 acts as the identity on im(L), we have:

L1/2AuL
1/2 = L1/2(L†/2BuL

†/2)L1/2 = Bu.

Also, L1/2PL1/2 = L. Thus, the inequality becomes
∑

u∈S Bu ⪯ εL. By Lemma 3, LS ⪯∑
u∈S Bu ⪯ εL. Thus S is ε-light.
If this hypothesis holds, then c ≥ 1/2. Combined with the upper bound, we would establish

c = 1/2.
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4 The Obstacle and Conjecture

The reduction theorem provides a pathway to c = 1/2, but the required matrix subset selection
hypothesis is false for general PSD families.

Example 5 (Counterexample for General Matrices). Let P = Id and Ai = eie
⊤
i for i = 1, . . . , d

(standard basis projectors). Then
∑d

i=1Ai = Id. For any non-empty subset S, the sum
∑

i∈S Ai

is a diagonal projection matrix with spectral norm λmax = 1. The hypothesis requires
∑

i∈S Ai ⪯
2pId, implying 1 ≤ 2p. This fails whenever p < 1/2.

The counterexample relies on {Ai} being mutually orthogonal rank-1 projectors. In the
graph case, Bu = 1

2

∑
v∼u L{u,v} corresponds to a ”half-star” at u. Crucially, adjacent vertices

u and v share the edge term L{u,v}, meaning BuBv ̸= 0. This structural overlap implies that
the normalized matrices {Au} are not mutually orthogonal.

We formalize the missing link as follows:

Conjecture 6 (Graph-Structured Subset Selection). Let G = (V,E) be a graph and let {Au}u∈V
be the normalized half-star matrices defined above. For any p ∈ (0, 1), there exists a subset
S ⊆ V with |S| ≥ pn such that: ∑

u∈S
Au ⪯ 2pP.

Establishing this conjecture is necessary and sufficient to prove that the sharp universal
constant is c = 1/2.
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