On the Stability Constant for e-light Vertex Subsets
Upper Bound and Structural Reduction

Dietmar Wolz, Ingo Althofer

February 10, 2026

Abstract

For a graph G = (V, E) with Laplacian L, a vertex subset S C V' is e-light if the spectral
inequality eL — Lg = 0 holds. We investigate the existence of a universal constant ¢ > 0
such that every graph contains an e-light subset of size |S| > ce|V|. We prove rigorously
that the optimal constant satisfies ¢ < 1/2 via a perfect matching obstruction. Furthermore,
we reduce the lower bound problem to a specific spectral subset selection hypothesis. We
demonstrate that this hypothesis fails for general positive semidefinite matrices, thereby
isolating the specific structural properties of graph Laplacians required to establish ¢ = 1/2.

1 Introduction

Let G = (V,FE) be a finite simple graph with n = |V| vertices. Let L be the Laplacian
matrix of G. For any subset S C V, let Lg denote the Laplacian of the induced subgraph
Gs = (V,E(S,9)).

Definition 1 (e-light subset). A subset S CV is called e-light if
LS = 5L7
where < denotes the Loewner order (i.e., eL — Lg is positive semidefinite).

Experimental evidence suggests that ¢ = 1/2 is the sharp constant. This note establishes
the upper bound ¢ < 1/2 and provides a rigorous reduction of the lower bound to a matrix
discrepancy conjecture on the image of the Laplacian.

2 Upper Bound: ¢ < 1/2

Theorem 2. Any universal constant ¢ guaranteeing the existence of an e-light set S with |S| >
cen must satisfy ¢ < 1/2.

Proof. Let G be a perfect matching on n vertices (where n is even). The edge set E comprises
n/2 disjoint edges.
Consider any edge e = {u,v} € E and the vector x = e,, — €.

e In the full graph G, u and v have degree 1 and are connected only by e. The quadratic
form is « " La = 4.

e In the induced subgraph Gg, if {u,v} C S, then 2" Lgz = 4. Otherwise, if at least one
endpoint is missing, « " Lgz = 0.



The condition Lg < eL implies 2" Lgz < ex! Lz. If S contains any full edge e, we have
4 < 4e, implying € > 1.

Thus, for any fixed € < 1, an e-light set .S must be an independent set. The maximum size
of an independent set in a perfect matching is exactly n/2. If a universal constant ¢ existed
such that |S| > cen, then:

TS| > een — ¢ <
- cen c< —
2~ 2
Since € can be chosen arbitrarily close to 1, we conclude ¢ < 1/2. O]

3 Structural Reduction via Linearization

To approach the lower bound, we decouple the quadratic dependence of Lg on the vertex set S
using a linearization relaxation.

Lemma 3 (Linearization). Let 6, € {0,1} be the indicator for uw € S. Then:
1
Lg < Z O0uBy, where By := 5 ZL{W’}'
ueV vU
Proof. We use the inequality 6,6, < % for binary variables. Summing over edges:

{uw}eFE {uw}eE ueV

3.1 Projection to Image Space

To analyze the spectral norm, we work in the image of L, denoted im(L). Let LT be the Moore-
Penrose pseudoinverse. Define the projection P = LY2LLY? ) which projects onto im(L). We
define the normalized matrices:

A, = LB, L2

These satisfy A, = 0 and ) .y Ay, = P. All subsequent PSD inequalities are understood
to hold on the subspace im(L). Equivalently, one may view the inequalities as holding after
applying the projection P to both sides.

Theorem 4 (Reduction). Suppose that for the specific family of matrices { Ay} derived from a
graph, and for any p € (0,1), there exists a subset S with |S| > pn such that >, _q Ay, < 2pP.
Then ¢ > 1/2.

u€eS

Proof. Set p = ¢/2. If such a set exists, we have S| > (¢/2)n and ) g Ay =< €P.
We now translate this back to the Laplacian scale. Restricted to 1m(L), we conjugate the
inequality by L/2:

LY/? <Z Au> LY2 < eLV2pri/2,
uesS

Using the fact that L'/2L/2 acts as the identity on im(L), we have:
L1/2AuL1/2 — Ll/?(LT/QBuLT/Z)Ll/Q — B

Also, LY2PLY? = L. Thus, the inequality becomes ) ¢ By, =< €L. By Lemma [3, Lg =
> wes Bu 2 eL. Thus S is e-light.

If this hypothesis holds, then ¢ > 1/2. Combined with the upper bound, we would establish
c=1/2. O



4 The Obstacle and Conjecture

The reduction theorem provides a pathway to ¢ = 1/2, but the required matrix subset selection
hypothesis is false for general PSD families.

Example 5 (Counterexample for General Matrices). Let P = Iy and A; = e;e] fori=1,...,d
(standard basis projectors). Then 2?21 A; = 14. For any non-empty subset S, the sum ) ;g A;
is a diagonal projection matriz with spectral norm Amax = 1. The hypothesis requires ) ;. ¢ A; =
2ply, implying 1 < 2p. This fails whenever p < 1/2.

The counterexample relies on {4;} being mutually orthogonal rank-1 projectors. In the
graph case, B, = %vau Ly, corresponds to a "half-star” at u. Crucially, adjacent vertices
u and v share the edge term Ly, .}, meaning B, B, # 0. This structural overlap implies that
the normalized matrices {A,} are not mutually orthogonal.

We formalize the missing link as follows:

Conjecture 6 (Graph-Structured Subset Selection). Let G = (V, E) be a graph and let { Ay }uev
be the normalized half-star matrices defined above. For any p € (0,1), there erists a subset
S CV with |S| > pn such that:

> A, = 2pP.

ueSsS

Establishing this conjecture is necessary and sufficient to prove that the sharp universal
constant is ¢ = 1/2.
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