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Abstract

For a graph G = (V,E) with Laplacian L, call S ⊆ V ε-light if the induced Laplacian
satisfies LS ⪯ εL. We study whether there exists a universal constant c > 0 such that for
every G and every ε ∈ (0, 1) there exists an ε-light set with |S| ≥ c ε |V |.

We prove the universal upper bound c ≤ 1
2 using perfect matchings. We also explain why

“half-star” linearization techniques are too strong: they implicitly control the cut Laplacian
and therefore fail on matchings even when feasible sets exist. Finally, we give a fully explicit
greedy spectral barrier algorithm (Route D) that controls LS directly. The barrier analysis is
fully rigorous and reduces the remaining difficulty to a single structural hypothesis: a mass
τ -control lemma (stated explicitly). Conditional on this hypothesis with parameters (θ, β),
the algorithm constructs sets of size

|S| ≥ ε

α+ ε
n−O(1), with α ≥ 2

β(1− θ)
.

In particular, any improvement of the τ -control/selection constants directly propagates to
the final c.
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1 Problem statement

Let G = (V,E) be a (simple, unweighted) graph with n := |V | and Laplacian L =
∑

e∈E Le,
where for e = {p, q} we write

Le := (ep − eq)(ep − eq)
⊤.
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For a subset S ⊆ V , define the induced Laplacian LS as the Laplacian of the induced subgraph
G[S] embedded in RV (i.e. entries outside S are zero):

LS :=
∑

e∈E(S,S)

Le.

We call S ε-light if
LS ⪯ εL. (1)

Question 6 asks for the best universal constant c such that for all G and all ε ∈ (0, 1) there
exists an ε-light set S with |S| ≥ c ε n.

2 Universal upper bound: perfect matchings force c ≤ 1
2

Proposition 2.1 (Perfect matching obstruction). Let G be a perfect matching on n vertices
(so n is even and E consists of n/2 disjoint edges). Then for every ε ∈ (0, 1), any set S ⊆ V
satisfying (1) must be an independent set. Consequently, |S| ≤ n/2.

Proof. Write the edges as ei = {ui, vi}, i = 1, . . . , n/2. If S contains both endpoints of some
edge ek, then LS ⪰ Lek . Since L = Le1 + · · ·+ Len/2

and the Lei have disjoint supports, testing
Lek ⪯ εL against the vector x := euk

− evk gives

x⊤Lekx = x⊤Lx.

A direct calculation with x = (1,−1) on the {uk, vk} coordinates yields x⊤Lekx = 4 and hence
x⊤Lx = 4 as well. Therefore 4 ≤ ε · 4, so ε ≥ 1, contradicting ε ∈ (0, 1). Thus S cannot contain
both endpoints of any matching edge, i.e. S is independent, and hence |S| ≤ n/2.

Corollary 2.2 (Upper bound on the universal constant). Any universal constant c with the
property “for all G and all ε ∈ (0, 1), there exists S with |S| ≥ cεn and LS ⪯ εL” must satisfy
c ≤ 1

2 .

Proof. Apply Proposition 2.1 to a perfect matching and choose ε arbitrarily close to 1. Then
cεn ≤ n/2 forces c ≤ 1/(2ε) for all such ε, hence c ≤ 1/2.

3 Why half-star linearization fails on matchings

A common “linearization” writes L as a sum of vertex-local PSD matrices and then tries to
select many summands. Define for each vertex u the half-star matrix

Bu :=
∑
v∼u

1

2
L{u,v}.

Then L =
∑

u∈V Bu.

Lemma 3.1 (Half-star decomposition). For every S ⊆ V ,∑
u∈S

Bu = LS +
1

2
L∂S ,

where L∂S :=
∑

e∈E(S,V \S) Le is the cut Laplacian.

Proof. Fix an edge e = {p, q}. If p, q ∈ S, then e appears once in Bp and once in Bq, each time
with coefficient 1/2, so its total contribution to

∑
u∈S Bu equals Le, matching its contribution

to LS . If exactly one endpoint lies in S, then e contributes (1/2)Le to
∑

u∈S Bu and contributes
to L∂S . If neither endpoint lies in S it contributes nothing. Summing over edges gives the
identity.
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Remark 3.2 (Why this is too strong for small ε). On a perfect matching, take S to be any
independent set of size n/2 (one endpoint per edge). Then LS = 0, hence S is ε-light for every
ε ∈ (0, 1). However, L∂S = L (all edges cross the cut), so

∑
u∈S Bu = 1

2L. Thus the linearized
constraint

∑
u∈S Bu ⪯ εL would force ε ≥ 1/2, even though feasible sets exist for all ε. Therefore

any proof of the sharp constant must control LS without controlling L∂S.

4 Route D: a greedy barrier framework (conditional lower bound)

4.1 Normalization on im(L)

Let L† denote the Moore–Penrose pseudoinverse of L and write

AS := L†/2LSL
†/2, P := L†/2LL†/2.

Then P is the orthogonal projection onto im(L) and AS is PSD with im(AS) ⊆ im(L).

Lemma 4.1 (Equivalence of constraints). For ε > 0, the inequality LS ⪯ εL holds on RV if
and only if

AS ⪯ εP on im(L).

Proof. If LS ⪯ εL, left- and right-multiply by L†/2 to obtain AS ⪯ εL†/2LL†/2 = εP . Conversely,
assume AS ⪯ εP on im(L). For any x ∈ RV write y = L1/2x (interpreting L1/2 on im(L) and 0
on ker(L)). Then x⊤LSx = y⊤ASy and x⊤Lx = y⊤Py = ∥Py∥2. Thus y⊤ASy ≤ ε y⊤Py for all
y ∈ im(L), hence LS ⪯ εL.

Lemma 4.2 (Support on im(L)). For every S ⊆ V , PAS = ASP = AS. Moreover, if u /∈ S
and we define the update

∆u(S) := AS∪{u} −AS ,

then ∆u(S) ⪰ 0 and P∆u(S) = ∆u(S)P = ∆u(S).

Proof. All matrices have the form L†/2(·)L†/2, hence their images lie in im(L) and are annihilated
by I −P . Positivity follows because LS∪{u} −LS is a sum of edge Laplacians and thus PSD.

4.2 A key identity: sum of updates equals the cut Laplacian

For S ⊆ V , let L∂S :=
∑

e∈E(S,V \S) Le.

Lemma 4.3 (Sum-of-updates identity). For any S ⊆ V ,∑
u/∈S

∆u(S) = L†/2L∂SL
†/2 ⪯ P.

Proof. Adding u /∈ S introduces exactly the edges from u to S, hence LS∪{u}−LS =
∑

v∈S∩N(u) L{u,v}.
Summing over all u /∈ S counts each cut edge exactly once, giving L∂S . Finally L =
LS + L∂S + LV \S implies L∂S ⪯ L, and conjugating by L†/2 yields the PSD bound by P .

4.3 Barrier potential and one-step bounds

Fix a barrier level b > 0 and define the (unsubtracted) potential

Φb(A) := tr
(
(bP −A)−1

)
,

where all inverses and traces are taken on im(L) (so on im(L) one may read P = I).
Given a barrier increment δ > 0, set

Ψδ :=
(
(b+ δ)P −A

)−1
.

For an update ∆ ⪰ 0 supported on im(L) define the shifted scores

τδ(∆) := tr(Ψδ∆), ηδ(∆) := tr(Ψ2
δ∆).
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Lemma 4.4 (Average τ bound). Let U = V \ S. For fixed A = AS and δ > 0,∑
u∈U

τu,δ ≤ Φb+δ(A), where τu,δ := τδ(∆u(S)).

Proof. By Lemma 4.3,
∑

u∈U ∆u(S) ⪯ P . Since Ψδ ⪰ 0,∑
u∈U

τu,δ = tr

(
Ψδ

∑
u∈U

∆u(S)

)
≤ tr(ΨδP ) = tr(Ψδ) = Φb+δ(A).

Lemma 4.5 (τ–η comparison). Assume 0 ⪯ A ≺ (b + δ)P on im(L). Then for every PSD
update ∆ supported on im(L),

τδ(∆) ≤ (b+ δ) ηδ(∆).

Proof. On im(L), P = I and the eigenvalues of (b+ δ)I − A are b+ δ − λi(A) ≤ b+ δ, hence

Ψδ = ((b+ δ)I −A)−1 ⪰ 1
b+δ I. Let X = Ψ

1/2
δ ∆Ψ

1/2
δ ⪰ 0. Then τδ(∆) = tr(X) and

ηδ(∆) = tr(ΨδX) ≥ λmin(Ψδ) tr(X) ≥ 1

b+ δ
τδ(∆).

Lemma 4.6 (One-step resolvent bound). Assume 0 ⪯ A ≺ (b+ δ)P on im(L) and let ∆ ⪰ 0 be
supported on im(L). If τδ(∆) < 1, then

Φb+δ(A+∆) ≤ Φb+δ(A) +
ηδ(∆)

1− τδ(∆)
.

Proof. On im(L), set Ψδ = ((b+ δ)I −A)−1 and X = Ψ
1/2
δ ∆Ψ

1/2
δ ⪰ 0. Then

((b+ δ)I − (A+∆))−1 = Ψ
1/2
δ (I −X)−1Ψ

1/2
δ .

If τ := tr(X) < 1, then λmax(X) ≤ tr(X) = τ . For scalar x ∈ [0, τ ] one has (1− x)−1 ≤ 1 + x
1−τ ,

hence by functional calculus (I −X)−1 ⪯ I + 1
1−τX. Taking traces and using cyclicity yields

Φb+δ(A+∆) ≤ Φb+δ(A) +
1

1− τ
tr(ΨδX) = Φb+δ(A) +

ηδ(∆)

1− τδ(∆)
.

Lemma 4.7 (Barrier-drop lower bound). Let 0 ⪯ A ≺ bP on im(L) and δ > 0. With
Ψδ = ((b+ δ)P −A)−1,

Φb(A)− Φb+δ(A) ≥ δ tr(Ψ2
δ).

Proof. Diagonalize A on im(L) with eigenvalues λi ∈ [0, b). Then

Φb(A)−Φb+δ(A) =
∑
i

(
1

b− λi
− 1

b+ δ − λi

)
=
∑
i

δ

(b− λi)(b+ δ − λi)
≥
∑
i

δ

(b+ δ − λi)2
= δ tr(Ψ2

δ).

Proposition 4.8 (Shift–then–update step condition). Let ∆ ⪰ 0 be supported on im(L) and fix
δ > 0. If τδ(∆) < 1 and

ηδ(∆)

1− τδ(∆)
≤ Φb(A)− Φb+δ(A),

then Φb+δ(A+∆) ≤ Φb(A).

Proof. By Lemma 4.6, Φb+δ(A+∆) ≤ Φb+δ(A) + ηδ(∆)
1−τδ(∆) . Using the assumed inequality yields

Φb+δ(A+∆) ≤ Φb(A).
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4.4 The remaining missing ingredient: mass τ-control

At a step k, let S = Sk, A = Ak, and let U := V \ S with |U | = n− k. Fix δ = δk and define
τu,δ = τδ(∆u(S)).

Lemma 4.9 (Mass τ -control hypothesis). Fix parameters θ ∈ (0, 1) and β ∈ (0, 1]. At each step
k, define the set of τ -good candidates

Tk := {u ∈ U : τu,δk ≤ θ}.

Hypothesis: |Tk| ≥ β|U | for every k.

Remark 4.10 (A sufficient condition via a global potential bound). By Markov’s inequality
and Lemma 4.4, ∣∣{u ∈ U : τu,δ > θ}

∣∣ ≤ 1

θ

∑
u∈U

τu,δ ≤
1

θ
Φb+δ(A).

Thus a sufficient route to Lemma 4.9 is to prove an a priori bound of the form Φb+δ(A) ≤
(1− β)θ|U | along the run. This is exactly where one typically introduces a baseline-subtracted
potential in BSS-style analyses. No such unconditional bound is proved in this write-up; the
lower bound below is therefore conditional.

4.5 Selection and constant propagation

Lemma 4.11 (Selection among τ -good vertices). Assume Lemma 4.9 holds at a step with
parameters (θ, β). Let δ > 0 and Ψδ = ((b+ δ)P −A)−1. Then there exists u ∈ Tk such that

ηu,δ ≤ 1

β|U |
tr(Ψ2

δ).

Proof. All ηu,δ ≥ 0 and Tk ⊆ U , so

∑
u∈Tk

ηu,δ ≤
∑
u∈U

ηu,δ = tr

(
Ψ2

δ

∑
u∈U

∆u(S)

)
≤ tr(Ψ2

δP ) = tr(Ψ2
δ),

using Lemma 4.3. Averaging over |Tk| ≥ β|U | gives the claim.

Theorem 4.12 (Conditional barrier step, with explicit constants). Assume mass τ -control holds
with parameters (θ, β) at a step. Let |U | = n− k and choose a barrier increment

δ :=
α

|U |+ 1
with α ≥ 2

β(1− θ)
.

Then there exists a candidate u ∈ U such that the step condition of Proposition 4.8 holds, and
the update can be performed while maintaining Φb+δ(A+∆u) ≤ Φb(A).

Proof. By Lemma 4.11 there exists u ∈ Tk with ηu,δ ≤ tr(Ψ2
δ)/(β|U |), and by definition of Tk

we have τu,δ ≤ θ < 1. Hence

ηu,δ
1− τu,δ

≤ 1

1− θ
· 1

β|U |
tr(Ψ2

δ).

By Lemma 4.7, Φb(A)− Φb+δ(A) ≥ δ tr(Ψ2
δ). Therefore the step condition holds provided

1

1− θ
· 1

β|U |
≤ δ =

α

|U |+ 1
.

Since |U |/(|U |+ 1) ≥ 1/2, it suffices that α ≥ 2/(β(1− θ)). Then Proposition 4.8 applies.
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4.6 Algorithm and stopping time

Greedy barrier algorithm (Route D). Fix α ≥ 1 and set δk := α/(n− k + 1).
Initialize S0 = ∅, A0 = 0, and b0 := ε/(n+ 1). For k = 0, 1, 2, . . . while bk ≤ ε:

1. Set δ = δk and Ψδ := ((bk + δ)P −Ak)
−1.

2. Choose uk ∈ Uk := V \ Sk such that the step condition in Proposition 4.8 holds.

3. Update Sk+1 := Sk ∪ {uk}, Ak+1 := Ak +∆uk
(Sk), and bk+1 := bk + δ.

Return Sk⋆ where k⋆ := max{k : bk ≤ ε}.

Lemma 4.13 (Stopping time bound). Let α ≥ 1 and δk = α/(n− k + 1). Then the stopping
time satisfies

k⋆ ≥ n
(
1− e−ε/α

)
− 3.

Consequently, using 1− e−x ≥ x
1+x for x ∈ (0, 1),

k⋆ ≥ ε

α+ ε
n− 3.

Proof. We have

bk = b0 +

k−1∑
j=0

α

n− j + 1
= b0 + α

n+1∑
t=n−k+2

1

t
.

Using the lower integral bound
∑b

t=a
1
t ≥ ln

(
b+1
a

)
, the failure of the stopping condition at k⋆ + 1

implies

ε < bk⋆+1 ≤ b0 + α ln

(
n+ 2

n− k⋆ + 1

)
.

Rearranging gives n− k⋆ + 1 < (n+ 2) exp
(
− (ε− b0)/α

)
. With b0 = ε/(n+ 1), the slack can

be absorbed into the additive constant 3, yielding k⋆ ≥ n(1− e−ε/α)− 3. The second inequality
uses 1− e−x ≥ x

1+x .

Theorem 4.14 (Conditional lower bound, parameterized by (θ, β)). Assume the mass τ -control
hypothesis (Lemma 4.9) holds along the entire run with parameters (θ, β). Run the greedy barrier
algorithm with any

α ≥ 2

β(1− θ)
.

Then the returned set S is ε-light (i.e. LS ⪯ εL) and satisfies

|S| ≥ ε

α+ ε
n− 3.

Proof. At each step, Theorem 4.12 provides a valid choice of uk ensuring Φbk+1
(Ak+1) ≤

Φbk(Ak) < ∞ and hence Ak+1 ≺ bk+1P on im(L). When the algorithm stops at k⋆ we have
bk⋆ ≤ ε and therefore Ak⋆ ⪯ bk⋆P ⪯ εP , which is equivalent to LSk⋆

⪯ εL by Lemma 4.1. The
size bound is Lemma 4.13.

5 Status summary

Remark 5.1 (What is proved unconditionally vs. conditionally). Unconditionally, this write-up
proves the sharp obstruction c ≤ 1

2 (Section 2) and pinpoints why half-star linearization cannot
yield the sharp constant (Section 3). The greedy barrier analysis in Section 4 is rigorous, but the
lower bound is conditional: it depends on proving a mass τ -control statement (Lemma 4.9) or
an equivalent global upper bound on the shifted potential (Remark 4.10). Once such a control is
available with parameters (θ, β), the resulting constant follows explicitly from Theorem 4.14.
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