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Abstract

For a graph G = (V, F) with Laplacian L, call S C V e-light if the induced Laplacian
satisfies Ls < eL. We study whether there exists a universal constant ¢ > 0 such that for
every G and every € € (0,1) there exists an e-light set with S| > ce|V].

We prove the universal upper bound ¢ < % using perfect matchings. We also explain why
“half-star” linearization techniques are too strong: they implicitly control the cut Laplacian
and therefore fail on matchings even when feasible sets exist. Finally, we give a fully explicit
greedy spectral barrier algorithm (Route D) that controls Lg directly. The barrier analysis is
fully rigorous and reduces the remaining difficulty to a single structural hypothesis: a mass
T-control lemma (stated explicitly). Conditional on this hypothesis with parameters (6, ),
the algorithm constructs sets of size

€
S| > —-0(1 ith a > ——.
S| = S—n-0),  with a> ot
In particular, any improvement of the 7-control/selection constants directly propagates to
the final c.
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1 Problem statement

Let G = (V, E) be a (simple, unweighted) graph with n := [V| and Laplacian L = ) . Le,
where for e = {p, ¢} we write



For a subset S C V', define the induced Laplacian Lg as the Laplacian of the induced subgraph
G[S] embedded in RY (i.e. entries outside S are zero):

Lg = Z L.
ecE(S,S)

We call S e-light if
LS = eL. (1)

Question 6 asks for the best universal constant ¢ such that for all G and all € € (0,1) there
exists an e-light set S with |S| > cen.

2 Universal upper bound: perfect matchings force ¢ < %

Proposition 2.1 (Perfect matching obstruction). Let G be a perfect matching on n vertices
(so n is even and E consists of n/2 disjoint edges). Then for every e € (0,1), any set S CV
satisfying (1) must be an independent set. Consequently, |S| < n/2.

Proof. Write the edges as e; = {u;,v;}, i = 1,...,n/2. If S contains both endpoints of some
edge ey, then Lg = L., . Since L = L¢, + -+ + Le,, and the L., have disjoint supports, testing
L, =X €L against the vector x = ey, — e,, gives

xTLekx =z Lzx.

A direct calculation with x = (1, —1) on the {ug, vy} coordinates yields 2" L., x = 4 and hence
' Lz =4 as well. Therefore 4 < ¢ -4, so ¢ > 1, contradicting ¢ € (0,1). Thus S cannot contain
both endpoints of any matching edge, i.e. S is independent, and hence |S| < n/2. O

Corollary 2.2 (Upper bound on the universal constant). Any universal constant ¢ with the
property “for all G and all € € (0,1), there exists S with |S| > cen and Lg < eL” must satisfy
c< i,

=2

Proof. Apply Proposition 2.1 to a perfect matching and choose € arbitrarily close to 1. Then
cen < n/2 forces ¢ < 1/(2¢) for all such ¢, hence ¢ < 1/2. O

3 Why half-star linearization fails on matchings

A common “linearization” writes L as a sum of vertex-local PSD matrices and then tries to
select many summands. Define for each vertex u the half-star matrix

1
Bu = Z iL{u’v}
VU

Then L =3 oy Bu.

Lemma 3.1 (Half-star decomposition). For every S C 'V,

1
> By = Ls + 5 Los,

ueS
where Lgg = ZeEE(S,V\S) L. is the cut Laplacian.

Proof. Fix an edge e = {p, q}. If p,q € S, then e appears once in B, and once in By, each time
with coefficient 1/2, so its total contribution to ), ¢ By equals L., matching its contribution
to Lg. If exactly one endpoint lies in S, then e contributes (1/2)L. to ), .q B, and contributes
to Lyg. If neither endpoint lies in S it contributes nothing. Summing over edges gives the
identity. O



Remark 3.2 (Why this is too strong for small €). On a perfect matching, take S to be any
independent set of size n/2 (one endpoint per edge). Then Lg =0, hence S is e-light for every
e € (0,1). However, Lyg = L (all edges cross the cut), so > ,cq Bu = L. Thus the linearized
constraint ), .o By = €L would force e > 1/2, even though feasible sets exist for all €. Therefore
any proof of the sharp constant must control Lg without controlling Las.

4 Route D: a greedy barrier framework (conditional lower bound)

4.1 Normalization on im(L)
Let LT denote the Moore—Penrose pseudoinverse of L and write
Ag = L12Lgrt2  p.=L12LL12
Then P is the orthogonal projection onto im(L) and Ag is PSD with im(Ag) C im(L).

Lemma 4.1 (Equivalence of constraints). For e > 0, the inequality Ls = €L holds on RV if
and only if
As <eP on im(L).

Proof. If Lg < €L, left- and right-multiply by L1/2 to obtain Ag < ¢ LY/2LLY/2 = ¢ P. Conversely,
assume Ag < eP on im(L). For any 2 € RV write y = L'/2x (interpreting L'/? on im(L) and 0
on ker(L)). Then 2" Lgx =y " Agy and 2" Lz = y" Py = || Py||>. Thus y' Asy < ey Py for all
y € im(L), hence Lg < ¢L. O

Lemma 4.2 (Support on im(L)). For every S CV, PAg = AgP = Ag. Moreover, if u ¢ S
and we define the update
Ay(S) = Asuuy — As,

then A, (S) = 0 and PA,(S) = Ay (S)P = Ay(S).

Proof. All matrices have the form L/2(-)L1/2, hence their images lie in im(L) and are annihilated
by I — P. Positivity follows because Lgy,} — Ls is a sum of edge Laplacians and thus PSD. [

4.2 A key identity: sum of updates equals the cut Laplacian

For S CV, let Lgg := ZeeE(S,V\S) L.

Lemma 4.3 (Sum-of-updates identity). For any S CV,
D> ALS) = L1?LygLi? < P.
ugS

Proof. Adding u ¢ S introduces exactly the edges from u to S, hence Ly —Ls = ZveSﬁN(u) Ly vy
Summing over all u ¢ S counts each cut edge exactly once, giving Lyg. Finally L =
Ls + Laps + Ly\s implies Lyps < L, and conjugating by L1/2 yields the PSD bound by P. [

4.3 Barrier potential and one-step bounds
Fix a barrier level b > 0 and define the (unsubtracted) potential
®y(A) = tr ((bP — A)_l),

where all inverses and traces are taken on im(L) (so on im(L) one may read P = I).
Given a barrier increment ¢ > 0, set

Us = ((b+6)P—A) "
For an update A > 0 supported on im(L) define the shifted scores
5(A) = tr(TgA),  gs(A) = tr(T2A).



Lemma 4.4 (Average 7 bound). Let U =V \ S. For firted A= Ag and § > 0,

ZTu,é < q>b+5(A)a where Tu,g -= Té(A“(S))
uelU

Proof. By Lemma 4.3, Y s Ay(S) < P. Since ¥5 > 0,

uelU

Z Tu,s = tr <\I/5 Z Ay ) <tr(UsP) = tr(Vs) = Ppis5(A).

uelU uelU
]

Lemma 4.5 (17— comparison). Assume 0 < A < (b+ 0)P on im(L). Then for every PSD
update A supported on im(L),
75(A) < (b+0)ns(A).

Proof. On im(L), P = I and the eigenvalues of (b+ 0)I — A are b+ 0 — \;(A) < b+ J, hence
Us = ((b+8)] —A)" = psl. Let X = U;°AWy/% = 0. Then 5(A) = tr(X) and
1
ng(A) = tr(\Ing) > )\min(qlé) tr(X) > b1 o TJ(A).

O]

Lemma 4.6 (One-step resolvent bound). Assume 0 < A < (b+0)P on im(L) and let A = 0 be
supported on im(L). If 75(A) < 1, then

ns(A)
1—75(A)

Proof. On im(L), set U5 = ((b+6)I — A)~* and X = U}/AW}/? = 0. Then

(b+0) — (A+A) 1 = w1 — x)~ 1w}/,
If 7= tr(X) < 1, then Apax(X) < tr(X) = 7. For scalar z € [0,7] one has (1 —z)~! <1+ %,
hence by functional calculus (I — X)~! < T+ ﬁX . Taking traces and using cyclicity yields

ns(A)
1—715(A)

1
Cois(A+ A) < Pois(A) + 7—— tr(Vs.X) = Poy5(A) +
]

Lemma 4.7 (Barrier-drop lower bound). Let 0 < A < bP on im(L) and § > 0. With
=(b+0)P—A)"
Dp(A) — Ppys(A) > 6 tr(\I/(Qg).

Proof. Diagonalize A on im(L) with eigenvalues A; € [0,b). Then

1 1 5 5
Do(A)=Po+s(4) = Z <b— X b+o-— AZ-> - Z STy Z(b+5—)\)2 =0 t(V5).

O

Proposition 4.8 (Shift—then—update step condition). Let A = 0 be supported on im(L) and fix
0>0. If 5(A) < 1 and
ns(A)

m < (I)b(A) - (I)b+5(A)v

then (I)b+5(A + A) < CI)b(A)

Proof. By Lemma 4.6, ®445(A + A) < Py 5(A) + 7 (()) Using the assumed inequality yields

Ppi5(A+ A) < p(A). O



4.4 The remaining missing ingredient: mass 7-control

At a step k, let S = Sk, A = Ag, and let U .=V \ S with |U| = n — k. Fix § = ) and define
Tu,s = T5(Au(5))-

Lemma 4.9 (Mass 7-control hypothesis). Fiz parameters 6 € (0,1) and B € (0,1]. At each step
k, define the set of T-good candidates

Ty ={uelU: 1,5 <6}
Hypothesis: |Ty| > B|U| for every k.

Remark 4.10 (A sufficient condition via a global potential bound). By Markov’s inequality
and Lemma 4.4,
1 1
‘{u ceU:tys > 0}‘ < g Z Tus < i Dy 5(A).
uelU

Thus a sufficient route to Lemma 4.9 is to prove an a priori bound of the form @y 5(A) <
(1= B)0|U| along the run. This is exactly where one typically introduces a baseline-subtracted
potential in BSS-style analyses. No such unconditional bound is proved in this write-up; the
lower bound below is therefore conditional.

4.5 Selection and constant propagation

Lemma 4.11 (Selection among 7-good vertices). Assume Lemma 4.9 holds at a step with
parameters (0, 3). Let § >0 and W5 = ((b+6)P — A)~L. Then there exists u € T, such that

1

T tr \1’2 .

Proof. All n, s >0 and Ty, C U, so

S s Y s = t(w > Au<s>> < tr(¥3P) = tr(03),

u€Ty, uelU uelU
using Lemma 4.3. Averaging over |T;| > S|U| gives the claim. O
Theorem 4.12 (Conditional barrier step, with explicit constants). Assume mass T-control holds

with parameters (0, 3) at a step. Let |U| =n — k and choose a barrier increment

0]
0= —— ith P —
or+1 T Y= B

Then there exists a candidate uw € U such that the step condition of Proposition 4.8 holds, and
the update can be performed while maintaining ®pi5(A+ Ay) < $p(A).

Proof. By Lemma 4.11 there exists u € Ty, with 1,5 < tr(¥2)/(8|U]), and by definition of T},
we have 7, 5 <6 < 1. Hence

Nu,s < 1 ) 1
1*Tu,§ —1-0 5|U‘

tr(03).

By Lemma 4.7, ®,(A) — ®p15(A) > & tr(¥%). Therefore the step condition holds provided

1 a
—_ <= —
1—-60 plU| — Ul +1

Since |U|/(|U] + 1) > 1/2, it suffices that o > 2/(8(1 — #)). Then Proposition 4.8 applies. O



4.6 Algorithm and stopping time

Greedy barrier algorithm (Route D). Fix o > 1 and set 0, = a/(n — k + 1).
Initialize S = 0, Ag =0, and by :=¢/(n+1). For k =0,1,2,... while b <e:
1. Set § = 6 and W5 := ((by + 6)P — Ap)~!
2. Choose ug € U :=V \ Sk such that the step condition in Proposition 4.8 holds.
3. Update Sgi1 = Sk U{ug}, Ak+1 = Ax + Ay, (Sk), and byyq = by + 9.
Return Sy, where k, = max{k: by <e}.

Lemma 4.13 (Stopping time bound). Let « > 1 and 6 = a/(n — k + 1). Then the stopping
time satisfies
ke > n(l — e_a/a) — 3.

Consequently, using 1 —e™* > -2 for x € (0,1),

1+«
€
- 3.
= a+6n
Proof. We have
k—1 n+1
b, = =b
k o+ _ +1 0+ o Z
7=0 t=n— k+2

Using the lower integral bound Zt_ 1> ln(b+1) the failure of the stopping condition at k, + 1

implies
2
e< bk*-i-l < bO +Oéln<nn]:_H> .
- *

Rearranging gives n — k. +1 < (n+ 2) exp( — (¢ — bp)/a). With by = £/(n + 1), the slack can
be absorbed into the additive constant 3, yielding k. > n(1 — e~/ @) — 3. The second inequality

=
uses 1 —e 21+x OJ

Theorem 4.14 (Conditional lower bound, parameterized by (0, 3)). Assume the mass T-control
hypothesis (Lemma 4.9) holds along the entire run with parameters (6, 3). Run the greedy barrier

algorithm with any
2

o > ——.
~ B(1-0)
Then the returned set S is e-light (i.e. Lg = L) and satisfies

|S| > n—3.

o+ €
Proof. At each step, Theorem 4.12 provides a valid choice of u; ensuring @y, (Apy1) <
Oy, (A) < oo and hence Agy; < by P on im(L). When the algorithm stops at k. we have
b, < € and therefore Ay, = by, P = P, which is equivalent to Lg, =eL by Lemma 4.1. The
size bound is Lemma 4.13. U

5 Status summary

Remark 5.1 (What is proved unconditionally vs. conditionally). Unconditionally, this write-up
proves the sharp obstruction ¢ < % (Section 2) and pinpoints why half-star linearization cannot
yield the sharp constant (Section 3). The greedy barrier analysis in Section 4 is rigorous, but the
lower bound is conditional: it depends on proving a mass T-control statement (Lemma 4.9) or
an equivalent global upper bound on the shifted potential (Remark 4.10). Once such a control is
available with parameters (0, 3), the resulting constant follows explicitly from Theorem 4.14.
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