

Problem 07: Improved Proof (Smith Theory)

Ingo Althöfer, Dietmar Wolz

Problem

Let Γ be a uniform lattice in a real semisimple Lie group and assume that Γ contains an element of order 2. Can Γ be the fundamental group of a closed (compact, boundaryless) manifold M whose universal cover \widetilde{M} is acyclic?

Answer: No. We answer the question in the negative by proving a stronger topological result: if a closed manifold M has an integrally acyclic universal cover, then $\pi_1(M)$ is torsion-free. Equivalently, no nontrivial finite cyclic group can occur as a subgroup of $\pi_1(M)$. The "lattice" and "semisimple" hypotheses are irrelevant to this topological obstruction.

Proof

We proceed in four steps:

1. Show that integral acyclicity implies mod- p acyclicity.
2. Show that deck transformations must act freely.
3. Establish the isomorphism between the fundamental group and the deck group.
4. Show via Smith Theory that finite cyclic actions on mod- p acyclic spaces cannot be free.

Lemma 1 (Integral acyclicity implies mod- p acyclicity). *If a space X is integrally acyclic (i.e., $\widetilde{H}_i(X; \mathbb{Z}) = 0$ for all i), then for every prime p , it is mod- p acyclic ($\widetilde{H}_i(X; \mathbb{Z}/p) = 0$ for all i).*

Proof. For $i > 0$, the Universal Coefficient Theorem gives a split exact sequence:

$$0 \rightarrow H_i(X; \mathbb{Z}) \otimes \mathbb{Z}/p \rightarrow H_i(X; \mathbb{Z}/p) \rightarrow \text{Tor}(H_{i-1}(X; \mathbb{Z}), \mathbb{Z}/p) \rightarrow 0.$$

If X is integrally acyclic, then $H_i(X; \mathbb{Z}) = 0$ for all $i > 0$ and $H_0(X; \mathbb{Z}) \cong \mathbb{Z}$. Thus, the tensor and Tor terms vanish for all $i > 0$, implying $H_i(X; \mathbb{Z}/p) = 0$ for $i > 0$. For $i = 0$, $H_0(X; \mathbb{Z}/p) \cong H_0(X; \mathbb{Z}) \otimes \mathbb{Z}/p \cong \mathbb{Z} \otimes \mathbb{Z}/p \cong \mathbb{Z}/p$. Thus, the reduced homology $\widetilde{H}_0(X; \mathbb{Z}/p) = 0$. \square

Lemma 2 (Deck transformations act freely). *Let $\pi : \widetilde{M} \rightarrow M$ be a covering map with \widetilde{M} connected, and let $f : \widetilde{M} \rightarrow \widetilde{M}$ be a deck transformation. If f has a fixed point, then $f = \text{id}_{\widetilde{M}}$.*

Proof. Assume $f(x) = x$. Let $y \in \widetilde{M}$ be arbitrary. Since \widetilde{M} is connected (and locally path-connected as a manifold), it is path-connected. Choose a path $\alpha : [0, 1] \rightarrow \widetilde{M}$ with $\alpha(0) = x$ and $\alpha(1) = y$. Then $\pi \circ \alpha$ is a path in M starting at $\pi(x)$. Because f is a deck transformation, we have $\pi \circ f = \pi$. Thus:

$$\pi \circ (f \circ \alpha) = (\pi \circ f) \circ \alpha = \pi \circ \alpha.$$

This means α and $f \circ \alpha$ are both lifts of the same path $\pi \circ \alpha$ starting at the same point x (since $f(\alpha(0)) = f(x) = x$). By the uniqueness of path lifting, $f \circ \alpha = \alpha$. Evaluating at $t = 1$ gives $f(y) = y$. Since y was arbitrary, $f = \text{id}_{\widetilde{M}}$. \square

Lemma 3 (Deck group of the universal cover). *Let $\pi : \widetilde{M} \rightarrow M$ be the universal covering of a connected manifold M and fix a basepoint $\tilde{x} \in \widetilde{M}$ with $x = \pi(\tilde{x})$. Then the map $\Phi : \pi_1(M, x) \rightarrow \text{Deck}(\widetilde{M}/M)$ defined by sending a loop class $[\ell]$ to the unique deck transformation taking \tilde{x} to the endpoint of the lift of ℓ starting at \tilde{x} is a group isomorphism. In particular, γ has order p if and only if the corresponding deck transformation has order p .*

Proof. This is standard covering-space theory. The map Φ is well-defined by the uniqueness of path lifting and is a homomorphism by the concatenation of loops. Injectivity and surjectivity follow because \widetilde{M} is universal (simply connected) and the deck group acts simply transitively on each fiber. (See, e.g., Hatcher, *Algebraic Topology*, Section 1.3). \square

Lemma 4 (Smith Fixed Point Theorem (Manifold Case)). *Let p be a prime and let X be a finite-dimensional topological manifold. Assume $\widetilde{H}_i(X; \mathbb{Z}/p) = 0$ for all i . If the cyclic group C_p acts on X by homeomorphisms, then the fixed point set X^{C_p} is nonempty.*

Reference: Bredon, *Introduction to Compact Transformation Groups*, Ch. III, or tom Dieck, *Transformation Groups*.

Theorem 5. *Let M be a closed manifold. Let p be a prime. If the universal cover \widetilde{M} is mod- p acyclic, then $\pi_1(M)$ contains no element of order p .*

Proof. Suppose $\pi_1(M)$ contains an element γ of order p . Let $f : \widetilde{M} \rightarrow \widetilde{M}$ be the associated deck transformation. By Lemma 3, the isomorphism $\pi_1(M) \cong \text{Deck}(\widetilde{M}/M)$ implies that since $\gamma \neq e$, we have $f \neq \text{id}$ and the order of f is p .

By Lemma 2, a deck transformation with a fixed point must be the identity. Thus, $f \neq \text{id}$ implies $\text{Fix}(f) = \emptyset$.

On the other hand, since f has order p , it generates an action of the cyclic group $C_p = \langle f \rangle$ on \widetilde{M} by homeomorphisms. Since \widetilde{M} is mod- p acyclic, Lemma 4 implies $\text{Fix}(f) \neq \emptyset$.

This is a contradiction. Hence $\pi_1(M)$ contains no element of order p . \square

Corollary 6 (No torsion at all under integral acyclicity). *If \widetilde{M} is acyclic over \mathbb{Z} , then $\pi_1(M)$ is torsion-free.*

Proof. Suppose $\pi_1(M)$ contains a non-trivial torsion element γ of order $m > 1$. Choose a prime p dividing m . Then $\delta = \gamma^{m/p}$ is an element of order p . Since \widetilde{M} is integrally acyclic, Lemma 1 implies it is mod- p acyclic. By Theorem 5, $\pi_1(M)$ cannot contain an element of order p , contradicting the existence of δ . \square

Corollary 7. *If \widetilde{M} is acyclic (over \mathbb{Z}) and $\pi_1(M)$ contains an element of order 2, then no such closed manifold M exists.*

Proof. This is a special case of Corollary 6 where $p = 2$. \square

Conclusion for the problem

If Γ contains an element of order 2 and $\Gamma \cong \pi_1(M)$ for some closed manifold M , then Corollary 7 shows that \widetilde{M} cannot be acyclic. Hence the answer to the problem is *no*.