
Problem 07: Improved Proof (Smith Theory)

Ingo Althöfer, Dietmar Wolz

Problem

Let Γ be a uniform lattice in a real semisimple Lie group and assume that Γ contains an

element of order 2. Can Γ be the fundamental group of a closed (compact, boundaryless)

manifold M whose universal cover M̃ is acyclic?

Answer: No. We answer the question in the negative by proving a stronger topological result:

if a closed manifold M has an integrally acyclic universal cover, then π1(M) is torsion-free.
Equivalently, no nontrivial �nite cyclic group can occur as a subgroup of π1(M). The "lattice"
and "semisimple" hypotheses are irrelevant to this topological obstruction.

Proof

We proceed in four steps:

1. Show that integral acyclicity implies mod-p acyclicity.

2. Show that deck transformations must act freely.

3. Establish the isomorphism between the fundamental group and the deck group.

4. Show via Smith Theory that �nite cyclic actions on mod-p acyclic spaces cannot be free.

Lemma 1 (Integral acyclicity implies mod-p acyclicity). If a space X is integrally acyclic

(i.e., H̃i(X;Z) = 0 for all i), then for every prime p, it is mod-p acyclic (H̃i(X;Z/p) = 0 for

all i).

Proof. For i > 0, the Universal Coe�cient Theorem gives a split exact sequence:

0 → Hi(X;Z)⊗ Z/p → Hi(X;Z/p) → Tor(Hi−1(X;Z),Z/p) → 0.

If X is integrally acyclic, then Hi(X;Z) = 0 for all i > 0 and H0(X;Z) ∼= Z. Thus, the

tensor and Tor terms vanish for all i > 0, implying Hi(X;Z/p) = 0 for i > 0. For i = 0,
H0(X;Z/p) ∼= H0(X;Z)⊗Z/p ∼= Z⊗Z/p ∼= Z/p. Thus, the reduced homology H̃0(X;Z/p) =
0.

Lemma 2 (Deck transformations act freely). Let π : M̃ → M be a covering map with M̃

connected, and let f : M̃ → M̃ be a deck transformation. If f has a �xed point, then f = id
M̃
.

Proof. Assume f(x) = x. Let y ∈ M̃ be arbitrary. Since M̃ is connected (and locally path-

connected as a manifold), it is path-connected. Choose a path α : [0, 1] → M̃ with α(0) = x
and α(1) = y. Then π ◦α is a path in M starting at π(x). Because f is a deck transformation,

we have π ◦ f = π. Thus:
π ◦ (f ◦ α) = (π ◦ f) ◦ α = π ◦ α.

This means α and f ◦ α are both lifts of the same path π ◦ α starting at the same point x
(since f(α(0)) = f(x) = x). By the uniqueness of path lifting, f ◦ α = α. Evaluating at t = 1
gives f(y) = y. Since y was arbitrary, f = id

M̃
.
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Lemma 3 (Deck group of the universal cover). Let π : M̃ → M be the universal covering

of a connected manifold M and �x a basepoint x̃ ∈ M̃ with x = π(x̃). Then the map Φ :

π1(M,x) → Deck(M̃/M) de�ned by sending a loop class [ℓ] to the unique deck transformation

taking x̃ to the endpoint of the lift of ℓ starting at x̃ is a group isomorphism. In particular, γ
has order p if and only if the corresponding deck transformation has order p.

Proof. This is standard covering-space theory. The map Φ is well-de�ned by the uniqueness of

path lifting and is a homomorphism by the concatenation of loops. Injectivity and surjectivity

follow because M̃ is universal (simply connected) and the deck group acts simply transitively

on each �ber. (See, e.g., Hatcher, Algebraic Topology, Section 1.3).

Lemma 4 (Smith Fixed Point Theorem (Manifold Case)). Let p be a prime and let X be a

�nite-dimensional topological manifold. Assume H̃i(X;Z/p) = 0 for all i. If the cyclic group

Cp acts on X by homeomorphisms, then the �xed point set XCp is nonempty.

Reference: Bredon, Introduction to Compact Transformation Groups, Ch. III, or tom Dieck,

Transformation Groups.

Theorem 5. Let M be a closed manifold. Let p be a prime. If the universal cover M̃ is mod-p
acyclic, then π1(M) contains no element of order p.

Proof. Suppose π1(M) contains an element γ of order p. Let f : M̃ → M̃ be the associated

deck transformation. By Lemma 3, the isomorphism π1(M) ∼= Deck(M̃/M) implies that since

γ ̸= e, we have f ̸= id and the order of f is p.
By Lemma 2, a deck transformation with a �xed point must be the identity. Thus, f ̸= id

implies Fix(f) = ∅.
On the other hand, since f has order p, it generates an action of the cyclic group Cp = ⟨f⟩

on M̃ by homeomorphisms. Since M̃ is mod-p acyclic, Lemma 4 implies Fix(f) ̸= ∅.
This is a contradiction. Hence π1(M) contains no element of order p.

Corollary 6 (No torsion at all under integral acyclicity). If M̃ is acyclic over Z, then π1(M)
is torsion-free.

Proof. Suppose π1(M) contains a non-trivial torsion element γ of order m > 1. Choose a

prime p dividing m. Then δ = γm/p is an element of order p. Since M̃ is integrally acyclic,

Lemma 1 implies it is mod-p acyclic. By Theorem 5, π1(M) cannot contain an element of

order p, contradicting the existence of δ.

Corollary 7. If M̃ is acyclic (over Z) and π1(M) contains an element of order 2, then no

such closed manifold M exists.

Proof. This is a special case of Corollary 6 where p = 2.

Conclusion for the problem

If Γ contains an element of order 2 and Γ ∼= π1(M) for some closed manifold M , then Corollary

7 shows that M̃ cannot be acyclic. Hence the answer to the problem is no.
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