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Abstract

We present a proof that any polyhedral Lagrangian surface in R4 with exactly four
faces meeting at every vertex admits a Lagrangian smoothing. The proof relies on a local
normal form where the surface is represented as the graph of the differential of a continuous
piecewise-quadratic function in a single cotangent chart. The smoothing is constructed
explicitly via mollification, and the global structure is assembled by summing compactly
supported Hamiltonians.

1 Problem Statement
Let K ⊂ R4 be a polyhedral Lagrangian surface such that exactly four faces meet at every vertex,
and K is a topological submanifold of R4. Does K necessarily admit a Lagrangian smoothing?

2 Proof
The proof proceeds in three main steps:

1. Local Normal Form: We show that vertices and edges can be modeled as graphs of
continuous piecewise-quadratic functions in appropriate Darboux charts.

2. Local Smoothing: We construct an explicit smoothing of these local models using stan-
dard mollifiers.

3. Global Gluing: We assemble the local smoothings into a global Hamiltonian isotopy that
deforms K into a smooth Lagrangian surface.

2.1 Local Normal Form

We first establish that any finite set of Lagrangian planes through the origin can be represented
in a single cotangent chart.

Lemma 1 (A common cotangent chart). Let Π1, . . . , Πm ∈ Λ(2) be Lagrangian 2-planes in
(R4, ωstd) passing through the origin. Then there exists a Lagrangian plane V ∈ Λ(2) such that
V is transverse to each Πi. Identifying R4 ≃ T ∗R2 with fiber V , each Πi is the graph of a linear
map q 7→ Aiq with Ai symmetric.

Proof. The Maslov cycle ΣΠ = {V ∈ Λ(2) : dim(V ∩ Π) > 0} is a proper algebraic variety
(codimension 1 in Λ(2)). A finite union of such varieties has empty interior, so there exists a
Lagrangian plane V in the complement. In the cotangent chart associated with fiber V , each
transverse Lagrangian plane Πi is the graph of a linear map p = Aiq. The condition that Πi is
Lagrangian is equivalent to the symmetry of Ai. Thus, Πi is the graph of the differential of the
quadratic form Qi(q) = 1

2qT Aiq.
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Lemma 2 (Local quadratic PL model near a vertex). Let v ∈ K be a vertex with exactly four
incident faces. There exists a Darboux chart ϕ : (B, ωstd) → (R4, ωstd) centered at v and a
neighborhood U ⊂ R2 of 0 such that

ϕ−1(K) ∩ B =
4⋃

i=1
Γ(dQi|Si),

where S1, . . . , S4 are closed angular sectors covering U (with cyclic order), and Qi are homo-
geneous quadratic polynomials. Equivalently, K is the graph of the differential of a continuous
piecewise-quadratic function f : U → R such that f |Si = Qi.

Proof. By Lemma 1, we find a chart where all four tangent planes are graphs of differentials of
quadratic forms Qi. Since K is a topological submanifold, the faces meet continuously along
edges (rays in the base R2). Along the boundary ray rij = Si ∩ Sj , the planes must intersect,
which implies dQi(u) = dQj(u) for u ∈ rij . Integrating this equality along the ray from the
origin (where Qi(0) = Qj(0) = 0) implies Qi(u) = Qj(u) along the ray. Thus, the local forms
Qi glue to a single continuous function f on U . The gradient df is continuous because the linear
maps dQi agree on the boundaries.

2.2 Construction of the Smoothing

We construct the smoothing by mollifying the piecewise-quadratic generating function.

Proposition 1 (Local smoothing via mollification). Let f be the continuous piecewise-quadratic
function from Lemma 2. Fix nested disks Din ⋐ Dout ⋐ U and choose a smooth cutoff χ with
χ ≡ 1 on Din and supp(χ) ⊂ Dout. Let ρε be a standard mollifier and define

fε := (1 − χ) f + χ (ρε ∗ f).

Then for each ε > 0:

1. fε is smooth on Din and equals f on U \ Dout.

2. The graph Γ(dfε) is a smooth Lagrangian surface on π−1(Din) and agrees with K on π−1(U\
Dout).

Proof. Convolution ρε ∗ f produces a smooth function. The cutoff χ interpolates between the
smoothed function and the original f . On Din, χ ≡ 1, so fε = ρε ∗ f , which is smooth. On
U \ Dout, χ ≡ 0, so fε = f . The graph of the differential of any smooth function is a smooth
Lagrangian submanifold.

Proposition 2 (Hamiltonian Generation and Isotopy). Let ε(t) be a smooth monotonic function
for t ∈ [0, 1] with ε(0) = 0 and ε(t) > 0 for t > 0. Define ft = fε(t). The family Lt = Γ(dft)
defines a topological isotopy starting at L0 = K, which is smooth for t > 0. For t > 0, the
evolution is generated by the time-dependent Hamiltonian:

Ht(q, p) := −∂ft

∂t
(q).

Proof. Since f is C1 (its derivative df is continuous), the mollified functions fε converge to f in
the C1 topology on compact sets. Thus dfε → df uniformly, implying Hausdorff convergence of
the graphs Lt → K. For t > 0, let (q(t), p(t)) be a trajectory of XHt . The equations of motion
are q̇ = ∂pHt = 0 and ṗ = −∂qHt = ∂q(∂tft). Integrating ṗ yields p(t)−p(t0) = ∇ft(q)−∇ft0(q),
so the flow maps the graph of dft0 to the graph of dft.
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2.3 Global Gluing

We assemble the global smoothing by summing local Hamiltonians.

Lemma 3 (Crease model near an open edge). Let e be an open edge of K. Then there exists a
Darboux chart identifying a neighborhood Ue of e with an open set in T ∗R2 with base coordinates
q = (s, x) such that

K ∩ Ue = Γ(dQ+) ∩ Ue ∪ Γ(dQ−) ∩ Ue,

where Q±(q) = 1
2q⊤A±q for constant symmetric matrices A±. Proof of reduction: The planes

intersect along the line spanned by es (the edge direction). This implies (A+ −A−)es = 0. Define
G(q) = 1

2qT A−q. The symplectic shear (q, p) 7→ (q, p − dG(q)) transforms Q− to 0 and Q+ to
Q′

+ = 1
2qT (A+ −A−)q. Since (A+ −A−)es = 0, the matrix M = A+ −A− has the form diag(0, λ)

in coordinates aligned with es. Thus Q′
+(s, x) = 1

2λx2.

Theorem 1 (Global Smoothing). Let K ⊂ R4 be a polyhedral Lagrangian surface which is a
topological submanifold and such that exactly four faces meet at every vertex. Then K admits a
Lagrangian smoothing.

Proof. We construct the global Hamiltonian Ht by covering the singular locus.

1. Covering the Singular Locus: Choose vertex neighborhoods Bv and edge tubes Ue

such that every vertex lies in the interior of its Bv, and the union ⋃
Bv ∪

⋃
Ue covers the

entire 1-skeleton of K. Overlaps are allowed and necessary.

2. Local Hamiltonians:

• For each vertex v, let fv be the piecewise-quadratic function on Bv. Define the
smoothing fv,t via Proposition 1 and the Hamiltonian H

(v)
t = −∂tfv,t (extended by

0).
• For each edge e, let Fe be the crease function on Ue. Define the smoothing Fe,t by

1D mollification in the transverse variable x. Let H
(e)
t = −∂tFe,t (extended by 0).

3. Global Sum: Define the global Hamiltonian:

Ht :=
∑

v

H
(v)
t +

∑
e

H
(e)
t .

This Hamiltonian is well-defined and compactly supported. Its flow Ψt generates a La-
grangian isotopy Kt = Ψt(K). For any t > 0 and any point p in the singular skeleton,
p lies in the "inner smoothing region" Din of at least one local chart. In this region, the
local model is the graph of a *smooth* function. Since Ψt is a smooth ambient diffeo-
morphism, it preserves the smoothness of embedded submanifolds. Thus, for t > 0, Kt is
smooth everywhere. Finally, the local convergence estimates (C1 convergence of generating
functions) imply that Kt → K in the Hausdorff topology as t → 0.

Remark 1 (Experimental Sanity Check). Our numerical experiments confirm that typical con-
figurations of 4 Lagrangian planes can be represented in a single cotangent chart (Lemma 1).
The subset of Λ(2) transverse to a fixed fiber is contractible (homeomorphic to the vector space of
symmetric matrices). Therefore, any loop of planes lying in this chart must have Maslov index
0. The experiments verify this contractibility for 108 random samples, corroborating the analytic
proof.
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