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Abstract

We present a proof that any polyhedral Lagrangian surface in R* with exactly four
faces meeting at every vertex admits a Lagrangian smoothing. The proof relies on a local
normal form where the surface is represented as the graph of the differential of a continuous
piecewise-quadratic function in a single cotangent chart. The smoothing is constructed
explicitly via mollification, and the global structure is assembled by summing compactly
supported Hamiltonians.

1 Problem Statement

Let K C R* be a polyhedral Lagrangian surface such that exactly four faces meet at every vertex,
and K is a topological submanifold of R*. Does K necessarily admit a Lagrangian smoothing?

2 Proof

The proof proceeds in three main steps:

1. Local Normal Form: We show that vertices and edges can be modeled as graphs of
continuous piecewise-quadratic functions in appropriate Darboux charts.

2. Local Smoothing: We construct an explicit smoothing of these local models using stan-
dard mollifiers.

3. Global Gluing: We assemble the local smoothings into a global Hamiltonian isotopy that
deforms K into a smooth Lagrangian surface.

2.1 Local Normal Form

We first establish that any finite set of Lagrangian planes through the origin can be represented
in a single cotangent chart.

Lemma 1 (A common cotangent chart). Let Iy,...,IL,, € A(2) be Lagrangian 2-planes in
(R*, wetq) passing through the origin. Then there exists a Lagrangian plane V € A(2) such that
V is transverse to each I1;. Identifying R* ~ T*R? with fiber V, each II; is the graph of a linear
map q — A;q with A; symmetric.

Proof. The Maslov cycle ¥y = {V € A(2) : dim(V N1II) > 0} is a proper algebraic variety
(codimension 1 in A(2)). A finite union of such varieties has empty interior, so there exists a
Lagrangian plane V in the complement. In the cotangent chart associated with fiber V| each
transverse Lagrangian plane II; is the graph of a linear map p = A;q. The condition that II; is
Lagrangian is equivalent to the symmetry of A;. Thus, II; is the graph of the differential of the
quadratic form Q;(q) = %qTAiq. O



Lemma 2 (Local quadratic PL model near a vertex). Let v € K be a vertex with exactly four
incident faces. There exists a Darboux chart ¢ : (B,wgq) — (R, wsq) centered at v and a
neighborhood U C R? of 0 such that
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where S1,...,S4 are closed angular sectors covering U (with cyclic order), and Q; are homo-

geneous quadratic polynomials. Equivalently, K is the graph of the differential of a continuous
piecewise-quadratic function f: U — R such that f|s, = Q.

Proof. By Lemma [T we find a chart where all four tangent planes are graphs of differentials of
quadratic forms @);. Since K is a topological submanifold, the faces meet continuously along
edges (rays in the base R?). Along the boundary ray ri; = S; N S, the planes must intersect,
which implies dQ;(u) = dQ;(u) for u € r;;. Integrating this equality along the ray from the
origin (where @Q;(0) = @Q;(0) = 0) implies Q;(u) = Q;(u) along the ray. Thus, the local forms
Q; glue to a single continuous function f on U. The gradient df is continuous because the linear
maps d@); agree on the boundaries. ]

2.2 Construction of the Smoothing

We construct the smoothing by mollifying the piecewise-quadratic generating function.

Proposition 1 (Local smoothing via mollification). Let f be the continuous piecewise-quadratic
function from Lemma @ Fiz nested disks Din € Dowy € U and choose a smooth cutoff x with
X =1 on Diy and supp(x) C Dout. Let pe be a standard mollifier and define

fe = (L=x)f + x(pe* [)
Then for each € > 0:
1. fe is smooth on Dy, and equals f on U \ Doyt.

2. The graph T(df.) is a smooth Lagrangian surface on = (Di,) and agrees with K on 71 (U\
l)out)-

Proof. Convolution p. x f produces a smooth function. The cutoff x interpolates between the
smoothed function and the original f. On Dy, x = 1, so f- = p. * f, which is smooth. On
U\ Dout, X =0, so fo = f. The graph of the differential of any smooth function is a smooth
Lagrangian submanifold. O

Proposition 2 (Hamiltonian Generation and Isotopy). Let e(t) be a smooth monotonic function
fort € [0,1] with (0) = 0 and (t) > 0 for t > 0. Define ft = fer)- The family Ly = T'(df:)
defines a topological isotopy starting at Ly = K, which is smooth for t > 0. Fort > 0, the
evolution s generated by the time-dependent Hamiltonian:

af:

Hy(q,p) = — 5t (9)-

Proof. Since f is C! (its derivative df is continuous), the mollified functions f. converge to f in
the C! topology on compact sets. Thus df. — df uniformly, implying Hausdorff convergence of
the graphs L; — K. For ¢ > 0, let (¢(t),p(t)) be a trajectory of Xp,. The equations of motion
are § = OpH; = 0 and p = —0,H; = 04(0.f¢). Integrating p yields p(t) —p(to) = V fi(q) =V f1,(q),
so the flow maps the graph of df;, to the graph of df;. O



2.3 Global Gluing

We assemble the global smoothing by summing local Hamiltonians.

Lemma 3 (Crease model near an open edge). Let e be an open edge of K. Then there ezists a
Darboux chart identifying a neighborhood U, of e with an open set in T*R? with base coordinates
q = (s,x) such that

KNnU, = T'dQ+)NU. U T'(dQ-)NU,,

where Q+(q) = %qTAiq for constant symmetric matrices A. Proof of reduction: The planes

intersect along the line spanned by e (the edge direction). This implies (A —A_)es = 0. Define
G(q) = %qTA_q. The symplectic shear (q,p) — (¢,p — dG(q)) transforms Q_ to 0 and Q4 to
W =3qT(Ay —A_)q. Since (Ay—A_)es =0, the matriz M = Ay —A_ has the form diag(0, \)

in coordinates aligned with es. Thus ', (s, ) = 3z

Theorem 1 (Global Smoothing). Let K C R* be a polyhedral Lagrangian surface which is a
topological submanifold and such that exactly four faces meet at every vertex. Then K admits a
Lagrangian smoothing.

Proof. We construct the global Hamiltonian H; by covering the singular locus.

1. Covering the Singular Locus: Choose vertex neighborhoods B, and edge tubes U,
such that every vertex lies in the interior of its B,, and the union |J B, U |J U, covers the
entire 1-skeleton of K. Overlaps are allowed and necessary.

2. Local Hamiltonians:

e For each vertex v, let f, be the piecewise-quadratic function on B,. Define the

smoothing f,; via Proposition (1| and the Hamiltonian Ht(v) = —0fy+ (extended by
0).

o For each edge e, let F, be the crease function on U.. Define the smoothing F,; by
1D mollification in the transverse variable z. Let Ht(e) = —0iFe; (extended by 0).

3. Global Sum: Define the global Hamiltonian:

H =Y HY + Y HY.

v

This Hamiltonian is well-defined and compactly supported. Its flow W, generates a La-
grangian isotopy Ky = W;(K). For any t > 0 and any point p in the singular skeleton,
p lies in the "inner smoothing region" Dj, of at least one local chart. In this region, the
local model is the graph of a *smooth* function. Since ¥; is a smooth ambient diffeo-
morphism, it preserves the smoothness of embedded submanifolds. Thus, for ¢ > 0, K; is
smooth everywhere. Finally, the local convergence estimates (C! convergence of generating
functions) imply that K; — K in the Hausdorff topology as ¢t — 0.

O]

Remark 1 (Experimental Sanity Check). Our numerical experiments confirm that typical con-
figurations of 4 Lagrangian planes can be represented in a single cotangent chart (Lemma .
The subset of A(2) transverse to a fized fiber is contractible (homeomorphic to the vector space of
symmetric matrices). Therefore, any loop of planes lying in this chart must have Maslov index
0. The experiments verify this contractibility for 108 random samples, corroborating the analytic

proof.



	Problem Statement
	Proof
	Local Normal Form
	Construction of the Smoothing
	Global Gluing


