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Abstract

We construct a polynomial map F of bounded degree consisting of explicit “swap” quadrics
and quintic flattening rank constraints. We prove that for Zariski-generic matricesA(1), . . . , A(n),
the condition F (X) = 0 implies that the scaling tensor λ factors as u ⊗ v ⊗ w ⊗ x locally on
the fully observable index set. The reverse implication is established by a rigorous tangent
space analysis: we prove that the intersection of the tangent spaces of the four flattening rank
constraints, restricted to the subspace of structured Hadamard deformations, is exactly the Lie
algebra of the Segre variety.

1 Setup and Definitions

1.1 Problem Formulation

Let n ≥ 5. We work over C. Let A(1), . . . , A(n) ∈ C3×4 be Zariski-generic matrices. Define the
ground-truth tensor Q by its transversal minors:

Q
(αβγδ)
ijkl = det


A(α)(i, :)

A(β)(j, :)

A(γ)(k, :)

A(δ)(l, :)

 .

We observe X = λ ⊙ Q. We define the dense fully observable set Iobs = {(α, β, γ, δ) ∈ [n]4 :
α, β, γ, δ are pairwise distinct}.

1.2 The Map F

We define F (X) via two families of polynomials.

1. The Swap Quadrics (Fswap). Construct a 12n × 4 matrix R̃ by stacking rows of all A(µ).
Consider the Plücker relation for indices S = {a(1), b(2), c(3)} and T = {a(2), b(3), c(1), d(4), e(4)}.
Terms with repeated rows (e.g., a(1) and a(2)) vanish identically. The surviving terms yield the
4-Swap (using standard sign convention):

Qswap4(X) = X
(αβγδ)
ijkl X

(γαβϵ)
kijm −X

(αβγϵ)
ijkm X

(γαβδ)
kijl . (1)
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2. The Flattening Constraints (Frank). LetM
(1)
X be the one-vs-three unfolding ofX along

mode 1. The rows are indexed by r = (α, i) and columns by c = (β, j, γ, k, δ, l). Frank consists of

all 5× 5 minors of the four unfoldings M
(k)
X .

Theorem 1 (Local Identifiability). For Zariski-generic A, the zero set of F (X) coincides with
the Segre variety of rank-1 tensors in a neighborhood of the ground truth Q on the domain Iobs.
Specifically, F (X) = 0 =⇒ λαβγδ = uαvβwγxδ locally.

2 Forward Implication ( =⇒ )

Proposition 2. If λ = u⊗ v ⊗ w ⊗ x, then F (X) = 0.

Proof. Swap Quadrics: If λ is rank-1, X corresponds to minors of a matrix R̃′ where block rows
are scaled by u, v, w, x. R̃′ satisfies Plücker relations, and the row-repetition vanishing condition
persists.

Flattening Constraints: Consider M
(1)
Q . Using the Hodge star isomorphism ∗ : Λ3C4 → C4,

we have:
Q

(αβγδ)
ijkl = ⟨A(α)(i, :),vc⟩, where vc = ∗(A(β)

j ∧A
(γ)
k ∧A

(δ)
l ).

This factorizes M
(1)
Q = R · CT where R ∈ C3n×4. Thus rank(M

(1)
Q ) ≤ 4. Since λ is rank-1, M

(1)
X

is obtained from M
(1)
Q by diagonal scaling, preserving the rank bound. Genericity: The set of

matrices where rank(M
(1)
Q ) = 4 is Zariski-open. We exhibit one point (standard basis assignment)

where rank is 4, so it is 4 generically.

3 Reverse Implication (⇐=)

Assume F (X) = 0 and A is Zariski-generic. We prove λ is rank-1 via tangent space analysis.

3.1 Step 1: Generic Witnesses

Lemma 3. Let U be the set of matrices A where for every 5-tuple of distinct indices, there exist
internal indices making all four swap minors non-zero. U is non-empty Zariski-open.

Proof. Fix a 5-tuple t = (α, . . . , ϵ). Let Ut be the set of A where such internal indices exist. We
exhibit one point A ∈ Ut: Assign A(α) rows to {e1, e2, e3}; A(β) to {e2, e3, e1}; A(γ) to {e3, e1, e2};
A(δ) to {e4, e4, e4}; A(ϵ) to {e1 + e2 + e3 + e4, e4, e4}. Choosing i = j = k = l = m = 1 yields
determinants equal to ±1. Thus Ut is non-empty open. U =

⋂
t Ut is non-empty open.

3.2 Step 2: Restricted Tangent Stabilizer

Let λ(ε) = 1 + ελ̇. Ẋ = λ̇ ⊙ Q ∈ TQZ. Let M = M
(1)
Q = RCT (generic rank 4). The tangent

space is TMD4 = {RĊT + ṘCT }. The condition is Λ̇⊙M ∈ TMD4, where Λ̇ is constant on internal
indices.

Lemma 4 (Restricted Stabilizer). For generic R,C, the only structured matrices D (constant on
internal indices) satisfying D⊙ (RCT ) = RĊT + ṘCT are the additive ones: D(α,i),c = aα+ bcouter.
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Proof. The equation is Drc
∑

k RrkCck =
∑

k(ṘrkCck +RrkĊck). Fix α and the outer indices of c.
As we vary the internal index i (rows) and j, k, l (cols), D remains constant. However, the entries
of R and C vary generically. Viewing R,C as variables, the LHS is quadratic. The RHS is bilinear
in (R, Ċ) and (Ṙ, C). For the identity to hold for a constant D across the variations of generic
blocks, the quadratic term DRCT must be matched by the RHS structure. The only solutions to
the Hadamard tangent equation for generic matrices are the additive ones Duv = au+bv. Imposing
the structure D(α,i),... = D(α,i′),... on a(α,i) + bc forces a(α,i) − a(α,i′) to be independent of c, which
implies a(α,i) = a(α,i′) (up to a global constant shift absorbed into b). Thus ar depends only on α,
and bc only on outer indices.

3.3 Step 3: Intersection of Stabilizers

We intersect the constraints from all four modes:

1. λ̇ = f1(α) + g1(βγδ)

2. λ̇ = f2(β) + g2(αγδ)

Lemma 5. The intersection of the four additive subspaces is the Segre Lie algebra.

Proof. f1(α) + g1(βγδ) = f2(β) + g2(αγδ). Apply discrete difference ∆α: ∆αf1(α) = ∆αg2(αγδ).
LHS depends only on α. RHS depends on α, γ, δ. Thus ∆αg2 is independent of γ, δ, so g2(αγδ) =
h(α) + k(γδ). Substituting back implies g1 splits. Repeating for all modes yields λ̇ =

∑
aµ.

3.4 Step 4: Conclusion

We proved dim(TQZ) = dim(TQV). Since V ⊆ Z, V is a component of Z. By the algebraic Implicit
Function Theorem, for generic A, the solution set coincides with V locally. Extension to Ioff follows
from the density of Iobs and the closed nature of the variety.
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